Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorGutiérrez Serrés, Pere
dc.contributor.authorMartínez-Seara Alonso, M. Teresa
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-10-01T15:46:07Z
dc.date.available2007-10-01T15:46:07Z
dc.date.issued2003
dc.identifier.urihttp://hdl.handle.net/2117/1196
dc.description.abstractWe consider a singular or weakly hyperbolic Hamiltonian, with $n+1$ degrees of freedom, as a model for the behaviour of a nearly-integrable Hamiltonian near a simple resonance. The model consists of an integrable Hamiltonian possessing an $n$-dimensional hyperbolic invariant torus with fast frequencies $\omega/\sqrt\varepsilon$ and coincident whiskers, plus a perturbation of order $\mu=\varepsilon^p$. The vector $\omega$ is assumed to satisfy a Diophantine condition. We provide a tool to study, in this singular case, the splitting of the perturbed whiskers for $\varepsilon$ small enough, as well as their homoclinic intersections, using the Poincar\'e--Melnikov method. Due to the exponential smallness of the Melnikov function, the size of the error term has to be carefully controlled. So we introduce flow-box coordinates in order to take advantage of the quasiperiodicity properties of the splitting. As a direct application of this approach, we obtain quite general upper bounds for the splitting.
dc.format.extent36 pages
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshPartial differential equations
dc.subject.lcshHamiltonian dynamical systems
dc.subject.lcshLagrangian functions
dc.subject.otherhyperbolic KAM theory
dc.subject.otherflow-box coordinates
dc.subject.otherPoincaré-Melnikov method
dc.titleExponentially small splitting for whiskered tori in Hamiltonian systems: Flow-box coordinates and upper bounds
dc.typeArticle
dc.subject.lemacEquacions en derivades parcials
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Funcions de
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::35 Partial differential equations::35N Overdetermined systems
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 2.5 Spain