A finite volume method to solve the frost growth using dynamic meshes

View/Open
Cita com:
hdl:2117/119649
Document typeArticle
Defense date2018-09-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The physical mechanisms of frost formation have been widely studied, yet much empirism is still needed in numerical approaches. Indeed, accurate simulations of frost growth can be reached by setting up a specific combination of the model empirical inputs while using a method to accurately track the frost-air interface.
This paper presents a finite volume ALE method which captures the air-frost interface using dynamic meshes. It is divided into two main sections. First, the search of a valid set of empirical correlations to correctly emulate frost growth under certain experimental conditions. An assessment of seven reference cases is carried out by comparing solutions using different empirical correlations against experimental data. As a result, a discussion on the performance of such parameters is made, emphasizing the fact of using diffusion resistance factors above 1.0 in order to capture the frost growth. Second, a 2D numerical test consisting of a duct flow with a non-homogeneously cooled lower boundary is performed. Aspects related to the frost thickness and growth rate are analysed, proving the method to be a valid candidate to simulate frost growth.
CitationBartrons, E., Oliet, C., Gutierrez, E., Naseri, A., Perez, C. A finite volume method to solve the frost growth using dynamic meshes. "International journal of heat and mass transfer", 1 Setembre 2018, vol. 124, p. 615-628.
ISSN0017-9310
Files | Description | Size | Format | View |
---|---|---|---|---|
Manuscript.pdf | 1,642Mb | View/Open |