Equivalence of Boltzmann and moment equations

View/Open
Cita com:
hdl:2117/11956
Document typeArticle
Defense date2010-10-28
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The closure problem for the stellar hydrodynamic equations is studied by describing the family of phase space density functions, for which the collisionless Boltzmann equation is strictly equivalent to a finite subset of moment equations. It is proven that the redundancy of the higher-order moment equations and the recurrence of the velocity moments are of similar nature. The method is based on the use of maximum entropy distributions, which are afterwards generalised to phase space density functions depending on any isolating integral of motion in terms of a polynomial function of degree n in the velocities. The equivalence between the moment equations up to an order n + 1 and the collisionless Boltzmann equation is proven. It is then possible to associate the complexity of a stellar system, i.e., the minimum set of velocity moments needed to describe its main kinematic features, with the number of moment
equations required to model it.
CitationCubarsi, R. Equivalence of Boltzmann and moment equations. "Astronomy and astrophysics", 28 Octubre 2010, vol. 522, núm. A30, p. 1-8.
ISSN0004-6361
Files | Description | Size | Format | View |
---|---|---|---|---|
aa14766-10.pdf | 181,4Kb | View/Open |