Show simple item record

dc.contributor.authorMier Vinué, Anna de
dc.contributor.authorNoy Serrano, Marcos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.date.accessioned2011-03-18T10:51:24Z
dc.date.available2011-03-18T10:51:24Z
dc.date.created2005
dc.date.issued2005
dc.identifier.citationde Mier, A.; Noy, M. On matroids determined by their Tutte polynomials. "Discrete mathematics", 2005, vol. 302, núm. 1-3, p. 52-76.
dc.identifier.issn0012-365X
dc.identifier.urihttp://hdl.handle.net/2117/11948
dc.description.abstractA matroid is T-unique if it is determined up to isomorphism by its Tutte polynomial. Known T-unique matroids include projective and affine geometries of rank at least four, wheels, whirls, free and binary spikes, and certain generalizations of these matroids. In this paper we survey this work and give three new results. Namely, we prove the T-uniqueness of M(Km,n) and of the truncations of M(Kn), and we show the existence of exponentially large families of T-unique matroids.
dc.format.extent25 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshPolynomials
dc.subject.lcshMatroids
dc.subject.lcshGraph theory
dc.titleOn matroids determined by their Tutte polynomials
dc.typeArticle
dc.subject.lemacPolinomis
dc.subject.lemacMatrius (Matemàtica)
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. MD - Matemàtica Discreta
dc.identifier.doi10.1016/j.disc.2004.07.040
dc.rights.accessRestricted access - publisher's policy
drac.iddocument5381403
dc.description.versionPostprint (published version)
upcommons.citation.authorde Mier, A.; Noy, M.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameDiscrete mathematics
upcommons.citation.volume302
upcommons.citation.number1-3
upcommons.citation.startingPage52
upcommons.citation.endingPage76


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder