Show simple item record

dc.contributor.authorDelshams Valdés, Amadeu
dc.contributor.authorLlave Canosa, Rafael de la
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.date.accessioned2007-09-28T17:57:36Z
dc.date.available2007-09-28T17:57:36Z
dc.date.issued1999
dc.identifier.urihttp://hdl.handle.net/2117/1191
dc.description.abstractWe consider perturbations of integrable area preserving non twist maps of the annulus those are maps in which the twist condition changes sign These maps appear in a variety of applications notably transport in atmospheric Rossby waves We show in suitable parameter families the persistence of critical circles invariant circles whose rotation number is the maximum of all the rotation numbers of points in the map with Diophantine rotation number The parameter values with critical circles of frequency lie on a one dimensional analytic curve Furthermore we show a partial justication of Greenes criterion If analytic critical curves with Dio phantine rotation number exist the residue of periodic orbits that is one fourth of the trace of the derivative of the return map minus with rotation number converging to converges to zero exponen tially fast We also show that if analytic curves exist there should be periodic orbits approximating them and indicate how to compute them These results justify in particular conjectures put forward on the basis of numerical evidence in D del Castillo et al Phys D The proof of both results relies on the successive application of an iterative lemma which is valid also for d dimensional exact symplectic di eomorphisms The proof of this iterative lemma is based on the deformation method of singularity theory
dc.format.extent32 pages
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subject.lcshHamiltonian dynamical systems
dc.subject.lcshLagrangian functions
dc.subject.lcshDifferentiable dynamical systems
dc.subject.lcshHamiltonian systems
dc.subject.otherGreene's criterion
dc.subject.otherKAM theory
dc.titleKAM theory and a partial justification of Greene's criterion for non-twist maps
dc.typeArticle
dc.subject.lemacHamilton, Sistemes de
dc.subject.lemacLagrange, Funcions de
dc.subject.lemacSistemes dinàmics diferenciables
dc.contributor.groupUniversitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37E Low-dimensional dynamical systems
dc.subject.amsClassificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access
local.personalitzacitaciotrue


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 2.5 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 2.5 Spain