Show simple item record

dc.contributor.authorHuerta, Ramon
dc.contributor.authorMosqueiro, Thiago
dc.contributor.authorFonollosa Magrinyà, Jordi
dc.contributor.authorRulkov, Nikolai
dc.contributor.authorRodriguez Lujan, Irene
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.identifier.citationHuerta, R., Mosqueiro, T., Fonollosa, J., Rulkov, N., Rodriguez-Lujan, I. Online decorrelation of humidity and temperature in chemical sensors for continuous monitoring. "Chemometrics and intelligent laboratory systems", 15 Juliol 2016, vol. 157, p. 169-176.
dc.description.abstractA method for online decorrelation of chemical sensor signals from the effects of environmental humidity and temperature variations is proposed. The goal is to improve the accuracy of electronic nose measurements for continuous monitoring by processing data from simultaneous readings of environmental humidity and temperature. The electronic nose setup built for this study included eight metal-oxide sensors, temperature and humidity sensors with a wireless communication link to external computer. This wireless electronic nose was used to monitor the air for two years in the residence of one of the authors and it collected data continuously during 537 days with a sampling rate of 1 sample per second. To estimate the effects of variations in air humidity and temperature on the chemical sensors' signals, we used a standard energy band model for an n-type metal-oxide (MOX) gas sensor. The main assumption of the model is that variations in sensor conductivity can be expressed as a nonlinear function of changes in the semiconductor energy bands in the presence of external humidity and temperature variations. Fitting this model to the collected data, we confirmed that the most statistically significant factors are humidity changes and correlated changes of temperature and humidity. This simple model achieves excellent accuracy with a coefficient of determination R2 close to 1. To show how the humidity–temperature correction model works for gas discrimination, we constructed a model for online discrimination among banana, wine and baseline response. This shows that pattern recognition algorithms improve performance and reliability by including the filtered signal of the chemical sensors.
dc.format.extent8 p.
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors
dc.subject.lcshChemical detectors
dc.subject.otherElectronic nose
dc.subject.otherChemical sensors
dc.subject.otherWireless e-nose
dc.subject.otherMOX sensors
dc.subject.otherEnergy band model
dc.subject.otherHome monitoring
dc.titleOnline decorrelation of humidity and temperature in chemical sensors for continuous monitoring
dc.subject.lemacDetectors -- Aparells i instruments
dc.subject.lemacSensors químics
dc.contributor.groupUniversitat Politècnica de Catalunya. B2SLab - Bioinformatics and Biomedical Signals Laboratory
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorHuerta, R.; Mosqueiro, T.; Fonollosa, J.; Rulkov, N.; Rodriguez-Lujan, I.
local.citation.publicationNameChemometrics and intelligent laboratory systems

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder