dc.contributor.author | Delshams Valdés, Amadeu |
dc.contributor.author | Llave Canosa, Rafael de la |
dc.contributor.author | Martínez-Seara Alonso, M. Teresa |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I |
dc.date.accessioned | 2007-09-28T17:51:20Z |
dc.date.available | 2007-09-28T17:51:20Z |
dc.date.issued | 1999 |
dc.identifier.uri | http://hdl.handle.net/2117/1190 |
dc.description.abstract | We give a proof based in geometric perturbation theory of a result proved by J.N. Mather using variational methods. Namely, the existence of orbits with unbounded energy in perturbations of a generic geodesic flow in T^2 by a generic periodic potential. |
dc.format.extent | 59 pages |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 2.5 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/2.5/es/ |
dc.subject.lcsh | Hamiltonian systems |
dc.subject.lcsh | Differential geometry |
dc.subject.other | orbits |
dc.subject.other | periodic perturbations |
dc.title | A geometric approach to the existence of orbits with unbounded energy in generic periodic perturbations by a potential of generic geodesic flows of T<sup>2</sup> |
dc.type | Article |
dc.subject.lemac | Hamilton, Sistemes de |
dc.contributor.group | Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions |
dc.subject.ams | Classificació AMS::37 Dynamical systems and ergodic theory::37J Finite-dimensional Hamiltonian, Lagrangian, contact, and nonholonomic systems |
dc.subject.ams | Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry |
dc.rights.access | Open Access |
local.personalitzacitacio | true |