Show simple item record

dc.contributor.authorArtús, Pau
dc.contributor.authorDürsteter, Juan Carlos
dc.contributor.authorMartínez Benasat, Antonio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2011-03-16T15:35:47Z
dc.date.available2011-03-16T15:35:47Z
dc.date.created2008-01-11
dc.date.issued2008-01-11
dc.identifier.citationArtús, P.; Dürsteter, J.C.; Martinez, A. Low-energy dynamic indentation method for analysis of ophthalmic materials. "Optometry and vision science", 11 Gener 2008, vol. 85, p. 49-53.
dc.identifier.issn1040-5488
dc.identifier.urihttp://hdl.handle.net/2117/11889
dc.description.abstractPurpose. The purpose of the present work is to understand and study the mechanical behavior and critical parameters of ophthalmic polymers. The article introduces a novel low-energy indentation method that can be used to study and optimize the mechanical properties of ophthalmic materials. The technique has been developed in the frame of a larger study on the impact resistance of materials. Method. The low-energy dynamic indentation method is based on a lumped mass-spring model solved by a 4th-order Runge-Kutta numerical method. The model can be used to predict the material response to the indentation of a hemi-spherical tip and calculate the elasticity modulus of materials, dissipated energy during impact, residual deformation after impact, indentation depth and their conservative and nonconservative components. Results. As an example, two ophthalmic polymers were compared: CR-39 as the universal ophthalmic standard, and Superfin as Indo Lens U.S., standard. Results showed the model is in good agreement with experimental data and allowed to obtain elasticity moduli for both materials, which showed similar values. A larger conservative component of the displacement for Superfin was also obtained and a smaller calculated residual displacement, which is indicative of less deformed material after low energy impacts. Conclusions. The model can satisfactorily predict the behavior of materials under low energy indentation situations. In addition, it can be used to distinguish two apparently similar materials, such as CR-39 and Superfin, and classify them according to their response to these kind of indentations. The technique could be used as a very powerful tool to improve ophthalmic materials
dc.format.extent5 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshMaterials science
dc.titleLow-energy dynamic indentation method for analysis of ophthalmic materials
dc.typeArticle
dc.subject.lemacMaterials -- Anàlisi
dc.contributor.groupUniversitat Politècnica de Catalunya. POLYCOM - Polimers i compòsits: tecnologia
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
drac.iddocument5348260
dc.description.versionPostprint (published version)
upcommons.citation.authorArtús, P.; Dürsteter, J.C.; Martinez, A.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameOptometry and vision science
upcommons.citation.volume85
upcommons.citation.startingPage49
upcommons.citation.endingPage53


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain