E-EON : Energy-Efficient and Optimized Networks for Hadoop
View/Open
Cita com:
hdl:2117/118779
Tutor / directorCarpenter, Paul Matthew
Chair / Department / Institute
Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
Document typeDoctoral thesis
Data de defensa2018-05-03
PublisherUniversitat Politècnica de Catalunya
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Energy efficiency and performance improvements have been two of the major concerns of current Data Centers. With the advent of Big Data, more information is generated year after year, and even the most aggressive predictions of the largest network equipment manufacturer have been surpassed due to the non-stop growing network traffic generated by current Big Data frameworks.
As, currently, one of the most famous and discussed frameworks designed to store, retrieve and process the information that is being consistently generated by users and machines, Hadoop has gained a lot of attention from the industry in recent years and presently its name describes a whole ecosystem designed to tackle the most varied requirements of today’s cloud applications. This thesis relates to Hadoop clusters, mainly focused on their interconnects, which is commonly considered to be the bottleneck of such ecosystem. We conducted research focusing on energy efficiency and also on performance optimizations as improvements on cluster throughput and network latency. Regarding the energy consumption, a significant proportion of a data center's energy consumption is caused by the network, which stands for 12% of the total system power at full load. With the non-stop growing network traffic, it is desired by industry and academic community that network energy consumption should be proportional to its utilization. Considering cluster performance, although Hadoop is a network throughput-sensitive workload with less stringent requirements for network latency, there is an increasing interest in running batch and interactive workloads concurrently on the same cluster. Doing so maximizes system utilization, to obtain the greatest benefits from the capital and operational expenditures. For this to happen, cluster throughput should not be impacted when network latency is minimized.
The two biggest challenges faced during the development of this thesis were related to achieving near proportional energy consumption for the interconnects and also improving the network latency found on Hadoop clusters, while having virtually no loss on cluster throughput. Such challenges led to comparable sized opportunity: proposing new techniques that must solve such problems from the current generation of Hadoop clusters.
We named E-EON the set of techniques presented in this work, which stands for Energy Efficient and Optimized Networks for Hadoop. E-EON can be used to reduce the network energy consumption and yet, to reduce network latency while cluster throughput is improved at the same time. Furthermore, such techniques are not exclusive to Hadoop and they are also expected to have similar benefits if applied to any other Big Data framework infrastructure that fits the problem characterization we presented throughout this thesis.
With E-EON we were able to reduce the energy consumption by up to 80% compared to the state-of-the art technique. We were also able to reduce network latency by up to 85% and in some cases, even improve cluster throughput by 10%. Although these were the two major accomplishment from this thesis, we also present minor benefits which translate to easier configuration compared to the stat-of-the-art techniques. Finally, we enrich the discussions found in this thesis with recommendations targeting network administrators and network equipment manufacturers. La eficiencia energética y las mejoras de rendimiento han sido dos de las principales preocupaciones de los Data Centers actuales. Con el arribo del Big Data, se genera más información año con año, incluso las predicciones más agresivas de parte del mayor fabricante de dispositivos de red se han superado debido al continuo tráfico de red generado por los sistemas de Big Data. Actualmente, uno de los más famosos y discutidos frameworks desarrollado para almacenar, recuperar y procesar la información generada consistentemente por usuarios y máquinas, Hadoop acaparó la atención de la industria en los últimos años y actualmente su nombre describe a todo un ecosistema diseñado para abordar los requisitos más variados de las aplicaciones actuales de Cloud Computing. Esta tesis profundiza sobre los clusters Hadoop, principalmente enfocada a sus interconexiones, que comúnmente se consideran el cuello de botella de dicho ecosistema. Realizamos investigaciones centradas en la eficiencia energética y también en optimizaciones de rendimiento como mejoras en el throughput de la infraestructura y de latencia de la red. En cuanto al consumo de energía, una porción significativa de un Data Center es causada por la red, representada por el 12 % de la potencia total del sistema a plena carga. Con el tráfico constantemente creciente de la red, la industria y la comunidad académica busca que el consumo energético sea proporcional a su uso. Considerando las prestaciones del cluster, a pesar de que Hadoop mantiene una carga de trabajo sensible al rendimiento de red aunque con requisitos menos estrictos sobre la latencia de la misma, existe un interés creciente en ejecutar aplicaciones interactivas y secuenciales de manera simultánea sobre dicha infraestructura. Al hacerlo, se maximiza la utilización del sistema para obtener los mayores beneficios al capital y gastos operativos. Para que esto suceda, el rendimiento del sistema no puede verse afectado cuando se minimiza la latencia de la red. Los dos mayores desafíos enfrentados durante el desarrollo de esta tesis estuvieron relacionados con lograr un consumo energético cercano a la cantidad de interconexiones y también a mejorar la latencia de red encontrada en los clusters Hadoop al tiempo que la perdida del rendimiento de la infraestructura es casi nula. Dichos desafíos llevaron a una oportunidad de tamaño semejante: proponer técnicas novedosas que resuelven dichos problemas a partir de la generación actual de clusters Hadoop. Llamamos a E-EON (Energy Efficient and Optimized Networks) al conjunto de técnicas presentadas en este trabajo. E-EON se puede utilizar para reducir el consumo de energía y la latencia de la red al mismo tiempo que el rendimiento del cluster se mejora. Además tales técnicas no son exclusivas de Hadoop y también se espera que tengan beneficios similares si se aplican a cualquier otra infraestructura de Big Data que se ajuste a la caracterización del problema que presentamos a lo largo de esta tesis. Con E-EON pudimos reducir el consumo de energía hasta en un 80% en comparación con las técnicas encontradas en la literatura actual. También pudimos reducir la latencia de la red hasta en un 85% y, en algunos casos, incluso mejorar el rendimiento del cluster en un 10%. Aunque estos fueron los dos principales logros de esta tesis, también presentamos beneficios menores que se traducen en una configuración más sencilla en comparación con las técnicas más avanzadas. Finalmente, enriquecimos las discusiones encontradas en esta tesis con recomendaciones dirigidas a los administradores de red y a los fabricantes de dispositivos de red.
CitationFischer e Silva, R. E-EON : Energy-Efficient and Optimized Networks for Hadoop. Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2018. DOI 10.5821/dissertation-2117-118779 . Available at: <http://hdl.handle.net/2117/118779>
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
TRF-S1de1.pdf | 5,991Mb | View/Open |