Machine and deep learning approaches to localization and range estimation of underwater acoustic sources
View/Open
08349716.pdf (2,940Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/118230
Document typeConference lecture
Defense date2017
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectTECNOLOGIAS DE APRENDIZAJE PROFUNDO APLICADAS AL PROCESADO DE VOZ Y AUDIO (MINECO-TEC2015-69266-P)
Abstract
This paper introduces ongoing experiments and early results for the underwater localization and range estimation of acoustic sources. Beyond classical results obtained for direction of arrival estimation, results concerning range estimation using supervised learning with neural networks having both shallow and deep architectures are presented. The developed method is applicable in the context of a single sensor, a compact array, or a small aperture towed array and provided results with great potential both for industrial impact and for the conservation and density estimation of cetaceans. With an average error of 4.3% and 3.5%-respectively for a shallow and for a deep pre-trained architecture-for ranges up to 8 kilometers and consistently below 300 meters, the system provides robust estimates suitable for an automated real-time solution.
CitationHouegnigan, L., Safari, P., Nadeu, C., Andre, M., Van Der Schaar, M. Machine and deep learning approaches to localization and range estimation of underwater acoustic sources. A: Acoustics in Underwater Geosciences Symposium. "2017 IEEE/OES Acoustics in Underwater Geosciences Symposium (RIO Acoustics 2017): Rio de Janeiro, Brazil: 25-27 July 2017". Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 1-6.
ISBN978-1-5090-5011-6
Publisher versionhttps://ieeexplore.ieee.org/document/8349716/
Collections
- LAB - Laboratori d'Aplicacions Bioacústiques - Ponències/Comunicacions de congressos [13]
- Centre Tecnològic de Vilanova i la Geltrú - Ponències/Comunicacions de congressos [28]
- VEU - Grup de Tractament de la Parla - Ponències/Comunicacions de congressos [436]
- Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.213]
Files | Description | Size | Format | View |
---|---|---|---|---|
08349716.pdf![]() | 2,940Mb | Restricted access |