Foreground objects segmentation for moving camera scenarios based on SCGMM
View/Open
LNCS.pdf (2,002Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/117555
Document typeConference report
Defense date2011
Rights accessRestricted access - publisher's policy
Abstract
In this paper we present a new system for segmenting non-rigid objects in moving camera sequences for indoor and outdoor scenarios that achieves a correct object segmentation via global MAP-MRF framework formulation for the foreground and background classification task. Our proposal, suitable for video indexation applications, receives as an input an initial segmentation of the object to segment and it consists of two region-based parametric probabilistic models to model the spatial (x,y) and color (r,g,b) domains of the foreground and background classes. Both classes rival each other in modeling the regions that appear within a dynamic region of interest that includes the foreground object to segment and also, the background regions that surrounds the object. The results presented in the paper show the correctness of the object segmentation, reducing false positive and false negative detections originated by the new background regions that appear near the region of the object.
CitationGallego, J., Pardas, M., Solano, M. Foreground objects segmentation for moving camera scenarios based on SCGMM. A: International Workshop on Computational Intelligence for Multimedia Understanding. "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)". 2011, p. 195-206.
ISBN978-364232435-2
Publisher versionhttps://link.springer.com/chapter/10.1007/978-3-642-32436-9_17
Files | Description | Size | Format | View |
---|---|---|---|---|
LNCS.pdf![]() | 2,002Mb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder