Pipeline design to identify key features and perform classification on response/predisposition large-scale genetic data
View/Open
Cita com:
hdl:2117/117335
Document typeMaster thesis
Date2017-04
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We propose a state-of-the-art, scalable and flexible alternative to the classical GWAS approach, based on machine learning techniques, to analyze large-scale data and discover epistatic and non-epistatic polygenic variants in complex diseases.
DegreeMÀSTER UNIVERSITARI EN INNOVACIÓ I RECERCA EN INFORMÀTICA (Pla 2012)
Files | Description | Size | Format | View |
---|---|---|---|---|
124451.pdf | 5,690Mb | View/Open |