A general guide to applying machine learning to computer architecture
Cita com:
hdl:2117/117079
Document typeArticle
Defense date2018
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial 3.0 Spain
Abstract
The resurgence of machine learning since the late 1990s has been enabled by significant advances in computing performance and the growth of big data. The ability of these algorithms to detect complex patterns in data which are extremely difficult to achieve manually, helps to produce effective predictive models. Whilst computer architects have been accelerating the performance of machine learning algorithms with GPUs and custom hardware, there have been few implementations leveraging these algorithms to improve the computer system performance. The work that has been conducted, however, has produced considerably promising results.
The purpose of this paper is to serve as a foundational base and guide to future computer
architecture research seeking to make use of machine learning models for improving system efficiency.
We describe a method that highlights when, why, and how to utilize machine learning
models for improving system performance and provide a relevant example showcasing the effectiveness of applying machine learning in computer architecture. We describe a process of data
generation every execution quantum and parameter engineering. This is followed by a survey of a
set of popular machine learning models. We discuss their strengths and weaknesses and provide
an evaluation of implementations for the purpose of creating a workload performance predictor
for different core types in an x86 processor. The predictions can then be exploited by a scheduler
for heterogeneous processors to improve the system throughput. The algorithms of focus are
stochastic gradient descent based linear regression, decision trees, random forests, artificial neural
networks, and k-nearest neighbors.
CitationNemirovsky, D., Arkose, T., Markovic, N., Nemirovsky, M., Unsal, O., Cristal, A., Valero, M. A general guide to applying machine learning to computer architecture. "Supercomputing frontiers and innovations", 2018, vol. 5, núm. 1, p. 95-115.
ISSN2313-8734
Publisher versionhttp://superfri.org/superfri/article/view/165/262
Files | Description | Size | Format | View |
---|---|---|---|---|
A General Guide ... e Learning to Computer.pdf | 900,5Kb | View/Open |