DS-Prox : dataset proximity mining for governing the data lake

Cita com:
hdl:2117/117036
Document typeConference report
Defense date2017
PublisherSpringer
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
With the arrival of Data Lakes (DL) there is an increasing need for efficient dataset classification to support data analysis and information retrieval. Our goal is to use meta-features describing datasets to detect whether they are similar. We utilise a novel proximity mining approach to assess the similarity of datasets. The proximity scores are used as an efficient first step, where pairs of datasets with high proximity are selected for further time-consuming schema matching and deduplication. The proposed approach helps in early-pruning unnecessary computations, thus improving the efficiency of similar-schema search. We evaluate our approach in experiments using the OpenML online DL, which shows significant efficiency gains above 25% compared to matching without early-pruning, and recall rates reaching higher than 90% under certain scenarios.
CitationAl-serafi, A., Calders, T., Abello, A., Romero, O. DS-Prox : dataset proximity mining for governing the data lake. A: The International Conference on Similarity Search and Applications. "Similarity Search and Applications: 10th International Conference, SISAP 2017: Munich, Germany, October 4-6, 2017: proceedings". Berlín: Springer, 2017, p. 284-299.
ISBN978-3-319-68474-1
Publisher versionhttps://link.springer.com/chapter/10.1007/978-3-319-68474-1_20
Files | Description | Size | Format | View |
---|---|---|---|---|
DS-Prox_SISAP_Paper-Camera_Ready.pdf | 1,495Mb | View/Open |