Mostra el registre d'ítem simple

dc.contributor.authorSacco, Federica
dc.contributor.authorPaun, Bruno
dc.contributor.authorLehmkuhl Barba, Oriol
dc.contributor.authorIles, Tinen L.
dc.contributor.authorIaizzo, Paul A.
dc.contributor.authorHouzeaux, Guillaume
dc.contributor.authorVázquez, Mariano
dc.contributor.authorButakoff, Constantine
dc.contributor.authorAguado-Sierra, Jazmin
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2018-05-08T10:24:17Z
dc.date.available2018-05-08T10:24:17Z
dc.date.issued2018-04-30
dc.identifier.citationSacco, F. [et al.]. Left Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations. "Frontiers in Physiology", 30 Abril 2018, vol. 9.
dc.identifier.issn1664-042X
dc.identifier.urihttp://hdl.handle.net/2117/117011
dc.description.abstractThe aim of the present study is to characterize the hemodynamics of left ventricular (LV) geometries to examine the impact of trabeculae and papillary muscles (PMs) on blood flow using high performance computing (HPC). Five pairs of detailed and smoothed LV endocardium models were reconstructed from high-resolution magnetic resonance images (MRI) of ex-vivo human hearts. The detailed model of one LV pair is characterized only by the PMs and few big trabeculae, to represent state of art level of endocardial detail. The other four detailed models obtained include instead endocardial structures measuring ≥1 mm2 in cross-sectional area. The geometrical characterizations were done using computational fluid dynamics (CFD) simulations with rigid walls and both constant and transient flow inputs on the detailed and smoothed models for comparison. These simulations do not represent a clinical or physiological scenario, but a characterization of the interaction of endocardial structures with blood flow. Steady flow simulations were employed to quantify the pressure drop between the inlet and the outlet of the LVs and the wall shear stress (WSS). Coherent structures were analyzed using the Q-criterion for both constant and transient flow inputs. Our results show that trabeculae and PMs increase the intra-ventricular pressure drop, reduce the WSS and disrupt the dominant single vortex, usually present in the smoothed-endocardium models, generating secondary small vortices. Given that obtaining high resolution anatomical detail is challenging in-vivo, we propose that the effect of trabeculations can be incorporated into smoothed ventricular geometries by adding a porous layer along the LV endocardial wall. Results show that a porous layer of a thickness of 1.2·10−2 m with a porosity of 20 kg/m2 on the smoothed-endocardium ventricle models approximates the pressure drops, vorticities and WSS observed in the detailed models.
dc.description.sponsorshipThis paper has been partially funded by CompBioMed project, under H2020-EU.1.4.1.3 European Union’s Horizon 2020 research and innovation programme, grant agreement n◦ 675451. FS is supported by a grant from Severo Ochoa (n◦ SEV-2015-0493-16-4), Spain. CB is supported by a grant from the Fundació LaMarató de TV3 (n◦ 20154031), Spain. TI and PI are supported by the Institute of Engineering in Medicine, USA, and the Lillehei Heart Institute, USA.
dc.format.extent15 p.
dc.language.isoeng
dc.publisherFrontiers Media
dc.rightsAttribution-NonCommercial-NoDerivs 4.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica
dc.subject.lcshVentricular remodeling
dc.subject.otherTrabeculae
dc.subject.otherPapillary muscles
dc.subject.otherLeft ventricular modeling
dc.subject.otherLeft ventricular hemodynamics
dc.subject.otherPorosity
dc.titleLeft Ventricular Trabeculations Decrease the Wall Shear Stress and Increase the Intra-Ventricular Pressure Drop in CFD Simulations
dc.typeArticle
dc.subject.lemacCor--Ventricles
dc.identifier.doi10.3389/fphys.2018.00458
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.frontiersin.org/articles/10.3389/fphys.2018.00458/full
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/675451/EU/A Centre of Excellence in Computational Biomedicine/CompBioMed
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/PE2013-2016/SEV-2015-0493-16-4
local.citation.publicationNameFrontiers in Physiology
local.citation.volume9
dc.identifier.pmid29760665


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple