Show simple item record

dc.contributor.authorBarbero Liñán, María
dc.contributor.authorMuñoz Lecanda, Miguel Carlos
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada IV
dc.date.accessioned2007-08-01T18:54:42Z
dc.date.available2007-08-01T18:54:42Z
dc.date.issued2007-07-27
dc.identifier.citationBarbero Liñán, M.; Muñoz Lecanda, M.C. Constraint algorithm for extremals in optimal control problems. "International journal of geometric methods in modern physics", 27 Juliol 2007, vol. 6, núm. 7, p. 1221-1233.
dc.identifier.urihttp://hdl.handle.net/2117/1167
dc.description.abstractA characterization of different kinds of extremals of optimal control problems is given if we take an open control set. A well known constraint algorithm for implicit differential equations is adapted to the study of such problems. Some necessary conditions of Pontryagin’s Maximum Principle determine the primary constraint submanifold for the algorithm. Some examples in the control literature, such as subRiemannian geometry and control-affine systems, are revisited to give, in a clear geometric way, a subset where the abnormal, normal and strict abnormal extremals stand.
dc.format.extent21 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 2.5 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshDifferential equations
dc.subject.lcshOptimization (Mathematics)
dc.subject.lcshLagrangian functions
dc.subject.lcshHamiltonian dynamical systems
dc.subject.otherPontryagin’s Maximum Principle
dc.subject.otherabnormality
dc.subject.otheroptimal control problems
dc.subject.otherpresymplectic
dc.titleConstraint algorithm for extremals in optimal control problems
dc.typeArticle
dc.subject.lemacEquacions diferencials ordinàries
dc.subject.lemacControl òptim, Teoria del
dc.subject.lemacSistemes dinàmics diferenciables
dc.subject.lemacLagrange, Funcions de
dc.contributor.groupUniversitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
dc.subject.amsClassificació AMS::34 Ordinary differential equations::34A General theory
dc.subject.amsClassificació AMS::49 Calculus of variations and optimal control; optimization::49J Existence theories
dc.subject.amsClassificació AMS::49 Calculus of variations and optimal control; optimization::49K Necessary conditions and sufficient conditions for optimality
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70G General models, approaches, and methods
dc.subject.amsClassificació AMS::70 Mechanics of particles and systems::70H Hamiltonian and Lagrangian mechanics
dc.rights.accessOpen Access
local.identifier.drac3102954
local.citation.publicationNameInternational journal of geometric methods in modern physics
local.citation.volume6
local.citation.number7
local.citation.startingPage1221
local.citation.endingPage1233


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record