Show simple item record

dc.contributor.authorWood, David
dc.contributor.authorPor, Attila
dc.contributor.authorAbel, Zachary
dc.contributor.authorBallinger, Brad
dc.contributor.authorBose, Prosenjit
dc.contributor.authorCollette, Sébastien
dc.contributor.authorDujmovic, Vida
dc.contributor.authorHurtado Díaz, Fernando Alfredo
dc.contributor.authorKominers, Scott Duke
dc.contributor.authorLangerman, Stefan
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.date.accessioned2011-03-04T12:35:31Z
dc.date.available2011-03-04T12:35:31Z
dc.date.created2011-01
dc.date.issued2011-01
dc.identifier.citationAbel, Z. [et al.]. Every large point set contains many collinear points or an empty pentagon. "Graphs and combinatorics", Gener 2011, vol. 27, núm. 1, p. 47-60.
dc.identifier.issn0911-0119
dc.identifier.urihttp://hdl.handle.net/2117/11669
dc.description.abstractWe prove the following generalised empty pentagon theorem for every integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005].
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria convexa i discreta
dc.subject.lcshPentagon
dc.subject.lcshHexagons
dc.subject.lcshRamsey theory
dc.subject.lcshDiscrete geometry
dc.subject.lcshConvex geometry
dc.titleEvery large point set contains many collinear points or an empty pentagon
dc.typeArticle
dc.subject.lemacRamsey, Teoria de
dc.subject.lemacGeometria discreta
dc.subject.lemacGeometria convexa
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1007/s00373-010-0957-2
dc.subject.amsClassificació AMS::52 Convex and discrete geometry::52C Discrete geometry
dc.subject.amsClassificació AMS::05 Combinatorics::05D Extremal combinatorics
dc.relation.publisherversionhttp://arxiv.org/PS_cache/arxiv/pdf/0904/0904.0262v2.pdf
dc.rights.accessRestricted access - publisher's policy
drac.iddocument4931773
dc.description.versionPostprint (published version)
upcommons.citation.authorAbel, Z.; Ballinger, B.; Bose, P.; Collette, S.; Dujmovic, V.; Hurtado, F.; Kominers, S.; Langerman, S.; Por, A.; Wood, D.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameGraphs and combinatorics
upcommons.citation.volume27
upcommons.citation.number1
upcommons.citation.startingPage47
upcommons.citation.endingPage60


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder