Every large point set contains many collinear points or an empty pentagon
View/Open
large_point_set.pdf (221,7Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/11669
Document typeArticle
Defense date2011-01
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
We prove the following generalised empty pentagon theorem for every integer ℓ ≥ 2, every sufficiently large set of points in the plane contains ℓ collinear points or an empty pentagon. As an application, we settle the next open case of the “big line or big clique” conjecture of Kára, Pór, and Wood [Discrete Comput. Geom. 34(3):497–506, 2005].
CitationAbel, Z. [et al.]. Every large point set contains many collinear points or an empty pentagon. "Graphs and combinatorics", Gener 2011, vol. 27, núm. 1, p. 47-60.
ISSN0911-0119
Publisher versionhttp://arxiv.org/PS_cache/arxiv/pdf/0904/0904.0262v2.pdf
Files | Description | Size | Format | View |
---|---|---|---|---|
large_point_set.pdf![]() | 221,7Kb | Restricted access |