Mostra el registre d'ítem simple

dc.contributor.authorGhosh, Susanta
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2018-04-25T09:52:44Z
dc.date.available2018-04-25T09:52:44Z
dc.date.issued2013-01
dc.identifier.citationGhosh, S., Arroyo, M. An atomistic-based foliation model for multilayer graphene materials and nanotubes. "Journal of the mechanics and physics of solids", Gener 2013, vol. 61, núm. 1, p. 235-253.
dc.identifier.issn0022-5096
dc.identifier.urihttp://hdl.handle.net/2117/116662
dc.description.abstractWe present a three-dimensional continuum model for layered crystalline materials made out of weakly interacting two-dimensional crystalline sheets. We specialize the model to multilayer graphene materials, including multi-walled carbon nanotubes (MWCNTs). We view the material as a foliation, partitioning of space into a continuous stack of leaves, thus loosing track of the location of the individual graphene layers. The constitutive model for the bulk is derived from the atomistic interactions by appropriate kinematic assumptions, adapted to the foliation structure and mechanics. In particular, the elastic energy along the leaves of the foliation results from the bonded interactions, while the interaction energy between the walls, resulting from van der Waals forces, is parametrized with a stretch transversal to the foliation. The resulting theory is distinct from conventional anisotropic models, and can be readily discretized with finite elements. The discretization is not tied to the individual walls and allows us to coarse-grain the system in all directions. Furthermore, the evaluation of the non-bonded interactions becomes local. We test the accuracy of the foliation model against a previously proposed atomistic-based continuum model that explicitly describes each and every wall. We find that the new model is very efficient and accurate. Furthermore, it allows us to rationalize the rippling deformation modes characteristic of thick MWCNTs, highlighting the role of the van der Waals forces and the sliding between the walls. By exercising the model with very large systems of hollow MWCNTs and suspended multilayer graphene, containing up to 109 atoms, we find new complex post-buckling deformation patterns.
dc.format.extent19 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Programació matemàtica
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshOperations research
dc.subject.lcshStrength of materials
dc.subject.lcshElasticity
dc.subject.otherMulti-walled carbon nanotubes
dc.subject.otherGraphene
dc.subject.otherQuasicontinuum
dc.subject.otherBuckling
dc.titleAn atomistic-based foliation model for multilayer graphene materials and nanotubes
dc.typeArticle
dc.subject.lemacInvestigació operativa
dc.subject.lemacResistència de materials
dc.subject.lemacElasticitat
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.identifier.doi10.1016/j.jmps.2012.07.002
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::90 Operations research, mathematical programming::90B Operations research and management science
dc.subject.amsClassificació AMS::74 Mechanics of deformable solids::74B Elastic materials
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0022509612001366
dc.rights.accessOpen Access
local.identifier.drac10956527
dc.description.versionPostprint (author's final draft)
local.citation.authorGhosh, S.; Arroyo, M.
local.citation.publicationNameJournal of the mechanics and physics of solids
local.citation.volume61
local.citation.number1
local.citation.startingPage235
local.citation.endingPage253


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple