Show simple item record

dc.contributor.authorRubol, Simonetta
dc.contributor.authorFreixa, Anna
dc.contributor.authorSánchez Vila, Francisco Javier
dc.contributor.authorRomani Cornet, Anna Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2018-04-17T07:17:17Z
dc.date.available2019-03-01T01:30:30Z
dc.date.issued2018-02
dc.identifier.citationRubol, S., Freixa, A., Sanchez-Vila, X., Romani, A. Linking biofilm spatial structure to real-time microscopic oxygen decay imaging. "Biofouling", Febrer 2018, vol. 34, núm. 2, p. 200-211.
dc.identifier.issn0892-7014
dc.identifier.urihttp://hdl.handle.net/2117/116366
dc.descriptionThis is an Accepted Manuscript of an article published by Taylor & Francis Group in Biofouling on 2018, available online at: http://www.tandfonline.com/10.1080/08927014.2017.1423474
dc.description.abstractTwo non-destructive techniques, confocal laser scanning microscopy (CLSM) and planar optode (VisiSens imaging), were combined to relate the fine-scale spatial structure of biofilm components to real-time images of oxygen decay in aquatic biofilms. Both techniques were applied to biofilms grown for seven days at contrasting light and temperature (10/20°C) conditions. The geo-statistical analyses of CLSM images indicated that biofilm structures consisted of small (~100 µm) and middle sized (~101 µm) irregular aggregates. Cyanobacteria and EPS (extracellular polymeric substances) showed larger aggregate sizes in dark grown biofilms while, for algae, aggregates were larger in light-20°C conditions. Light-20°C biofilms were most dense while 10°C biofilms showed a sparser structure and lower respiration rates. There was a positive relationship between the number of pixels occupied and the oxygen decay rate. The combination of optodes and CLMS, taking advantage of geo-statistics, is a promising way to relate biofilm architecture and metabolism at the micrometric scale.
dc.format.extent12 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Enginyeria hidràulica, marítima i sanitària::Enginyeria sanitària
dc.subjectÀrees temàtiques de la UPC::Enginyeria química::Química del medi ambient::Geoquímica
dc.subject.lcshOxygen
dc.subject.lcshGeochemistry
dc.subject.otherConfocal laser scanning microscopy
dc.subject.otherreal-time images of oxygen concentration
dc.subject.otherbiofilm growth
dc.subject.otherplanar optodes
dc.subject.otherbiofilm respiration
dc.subject.othergeostatistics
dc.titleLinking biofilm spatial structure to real-time microscopic oxygen decay imaging
dc.typeArticle
dc.subject.lemacOxigen
dc.subject.lemacGeoquímica ambiental
dc.contributor.groupUniversitat Politècnica de Catalunya. GHS - Grup d'Hidrologia Subterrània
dc.identifier.doi10.1080/08927014.2017.1423474
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.tandfonline.com/doi/abs/10.1080/08927014.2017.1423474
dc.rights.accessOpen Access
local.identifier.drac22323492
dc.description.versionPostprint (author's final draft)
local.citation.authorRubol, S.; Freixa, A.; Sanchez-Vila, X.; Romani, A.
local.citation.publicationNameBiofouling
local.citation.volume34
local.citation.number2
local.citation.startingPage200
local.citation.endingPage211


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record