dc.contributor.author | Sempere Llagostera, Santiago |
dc.contributor.author | Serra Tort, Ana María |
dc.contributor.author | Boronat Medico, Jordi |
dc.contributor.author | Cazorla Silva, Claudio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Física |
dc.date.accessioned | 2018-04-17T06:41:49Z |
dc.date.available | 2018-04-17T06:41:49Z |
dc.date.issued | 2018-02-01 |
dc.identifier.citation | Sempere, S., Serra, A., Boronat, J., Cazorla, C. Dislocation structure and mobility in hcp rare-gas solids: quantum versus classical. "Crystals", 1 Febrer 2018, vol. 8, núm. 2, p. 1-19. |
dc.identifier.issn | 2073-4352 |
dc.identifier.other | https://www.researchgate.net/publication/322786180_Dislocation_Structure_and_Mobility_in_Hcp_Rare-Gas_Solids_Quantum_versus_Classical |
dc.identifier.uri | http://hdl.handle.net/2117/116361 |
dc.description.abstract | We study the structural and mobility properties of edge dislocations in rare-gas crystals with the hexagonal close-packed (hcp) structure by using classical simulation techniques. Our results are discussed in the light of recent experimental and theoretical studies on hcp 4He, an archetypal quantum crystal. According to our simulations classical hcp rare-gas crystals present a strong tendency towards dislocation dissociation into Shockley partials in the basal plane, similarly to what is observed in solid helium. This is due to the presence of a low-energy metastable stacking fault, of the order of 0.1 mJ/m2, that can get further reduced by quantum nuclear effects. We compute the minimum shear stress that induces glide of dislocations within the hcp basal plane at zero temperature, namely, the Peierls stress, and find a characteristic value of the order of 1 MPa. This threshold value is similar
to the Peierls stress reported for metallic hcp solids (Zr and Cd) but orders of magnitude larger than the one estimated for solid helium. We find, however, that in contrast to classical hcp metals but in analogy to solid helium, glide of edge dislocations can be thermally activated at very low temperatures, T~10 K, in the absence of any applied shear stress. |
dc.format.extent | 19 p. |
dc.language.iso | eng |
dc.publisher | Multidisciplinary Digital Publishing Institute (MDPI) |
dc.rights | Attribution 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria química::Química física::Estructura molecular |
dc.subject.lcsh | Solid rare gases |
dc.subject.other | dislocations |
dc.subject.other | rare-gas solids |
dc.subject.other | molecular dynamics |
dc.subject.other | quantum nuclear effects |
dc.title | Dislocation structure and mobility in hcp rare-gas solids: quantum versus classical |
dc.type | Article |
dc.subject.lemac | Gasos rars |
dc.contributor.group | Universitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity |
dc.identifier.doi | 10.3390/cryst8020064 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.mdpi.com/2073-4352/8/2/64 |
dc.rights.access | Open Access |
local.identifier.drac | 22323045 |
dc.description.version | Postprint (published version) |
local.citation.author | Sempere, S.; Serra, A.; Boronat, J.; Cazorla, C. |
local.citation.publicationName | Crystals |
local.citation.volume | 8 |
local.citation.number | 2 |
local.citation.startingPage | 1 |
local.citation.endingPage | 19 |