Show simple item record

dc.contributor.authorSempere Llagostera, Santiago
dc.contributor.authorSerra Tort, Ana María
dc.contributor.authorBoronat Medico, Jordi
dc.contributor.authorCazorla Silva, Claudio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2018-04-17T06:41:49Z
dc.date.available2018-04-17T06:41:49Z
dc.date.issued2018-02-01
dc.identifier.citationSempere, S., Serra, A., Boronat, J., Cazorla, C. Dislocation structure and mobility in hcp rare-gas solids: quantum versus classical. "Crystals", 1 Febrer 2018, vol. 8, núm. 2, p. 1-19.
dc.identifier.issn2073-4352
dc.identifier.otherhttps://www.researchgate.net/publication/322786180_Dislocation_Structure_and_Mobility_in_Hcp_Rare-Gas_Solids_Quantum_versus_Classical
dc.identifier.urihttp://hdl.handle.net/2117/116361
dc.description.abstractWe study the structural and mobility properties of edge dislocations in rare-gas crystals with the hexagonal close-packed (hcp) structure by using classical simulation techniques. Our results are discussed in the light of recent experimental and theoretical studies on hcp 4He, an archetypal quantum crystal. According to our simulations classical hcp rare-gas crystals present a strong tendency towards dislocation dissociation into Shockley partials in the basal plane, similarly to what is observed in solid helium. This is due to the presence of a low-energy metastable stacking fault, of the order of 0.1 mJ/m2, that can get further reduced by quantum nuclear effects. We compute the minimum shear stress that induces glide of dislocations within the hcp basal plane at zero temperature, namely, the Peierls stress, and find a characteristic value of the order of 1 MPa. This threshold value is similar to the Peierls stress reported for metallic hcp solids (Zr and Cd) but orders of magnitude larger than the one estimated for solid helium. We find, however, that in contrast to classical hcp metals but in analogy to solid helium, glide of edge dislocations can be thermally activated at very low temperatures, T~10 K, in the absence of any applied shear stress.
dc.format.extent19 p.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química::Química física::Estructura molecular
dc.subject.lcshSolid rare gases
dc.subject.otherdislocations
dc.subject.otherrare-gas solids
dc.subject.othermolecular dynamics
dc.subject.otherquantum nuclear effects
dc.titleDislocation structure and mobility in hcp rare-gas solids: quantum versus classical
dc.typeArticle
dc.subject.lemacGasos rars
dc.contributor.groupUniversitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity
dc.identifier.doi10.3390/cryst8020064
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.mdpi.com/2073-4352/8/2/64
dc.rights.accessOpen Access
local.identifier.drac22323045
dc.description.versionPostprint (published version)
local.citation.authorSempere, S.; Serra, A.; Boronat, J.; Cazorla, C.
local.citation.publicationNameCrystals
local.citation.volume8
local.citation.number2
local.citation.startingPage1
local.citation.endingPage19


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain