Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.811 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cokriging and multivariate kriging methods based on data of a functional random field

Thumbnail
View/Open
Giraldo, Delicado & Mateu. 2017. Cokriging and multivariate kriging methods based on data of a functional random field.pdf (4,566Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/116322

Show full item record
Giraldo, Ramon
Delicado Useros, Pedro FranciscoMés informacióMés informacióMés informació
Mateu Mahiques, Jorge
Document typeArticle
Defense date2017-12-23
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Kriging and cokriging and their several related versions are techniques widely known and used in spatial data analysis. However, when the spatial data are functions a bridge between functional data analysis and geostatistics has to be built. I give an overview to cokriging analysis and multivariable spatial prediction to the case where the observations at each sampling location consist of samples of random functions. I extend multivariable geostatistical methods to the functional context. Our cokriging method predicts one variable at a time as in a classical multivariable sense, but considering as auxiliary information curves instead of vectors. I also give an extension of multivariable kriging to the functional context where is defined a predictor of a whole curve based on samples of curves located at a neighborhood of the prediction site. In both cases a non-parametric approach based on basis function expansion is used to estimate the parameters, and I prove that both proposals coincide when using such an approach. A linear model of coregionalization is used to define the spatial dependence among the coefficients of the basis functions, and therefore for estimating the functional parameters. As an illustration the methodological proposals are applied to analyze two real data sets corresponding to average daily temperatures measured at 35 weather stations located in the Canadian Maritime Provinces, and penetration resistance data collected at 32 sampling sites of an experimental plot.
CitationGiraldo, R., Delicado, P., Mateu, J. Cokriging and multivariate kriging methods based on data of a functional random field. "Comunicaciones en Estadística", 23 Desembre 2017, vol. 10, núm. 2, p. 315-344. 
URIhttp://hdl.handle.net/2117/116322
ISSN2027-3355
Publisher versionhttp://revistas.usantotomas.edu.co/index.php/estadistica/article/view/3645
Collections
  • ADBD - Anàlisi de Dades Complexes per a les Decisions Empresarials - Articles de revista [102]
  • Departament d'Estadística i Investigació Operativa - Articles de revista [628]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Giraldo, Delica ... unctional random field.pdf4,566MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina