Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Estadística i Investigació Operativa
  • Reports de recerca
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Estadística i Investigació Operativa
  • Reports de recerca
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stabilized Benders methods for large-scale combinatorial optimization, with appllication to data privacy

Thumbnail
View/Open
Report de recerca (650,2Kb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/116306

Show full item record
Baena, Daniel
Castro Pérez, JordiMés informacióMés informacióMés informació
Frangioni, Antonio
Document typeResearch report
Defense date2017-10-24
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The Cell Suppression Problem (CSP) is a challenging Mixed-Integer Linear Problem arising in statistical tabular data protection. Medium sized instances of CSP involve thousands of binary variables and million of continuous variables and constraints. However, CSP has the typical structure that allows application of the renowned Benders’ decomposition method: once the “complicating” binary variables are fixed, the problem decomposes into a large set of linear subproblems on the “easy” continuous ones. This allows to project away the easy variables, reducing to a master problem in the complicating ones where the value functions of the subproblems are approximated with the standard cutting-plane approach. Hence, Benders’ decomposition suffers from the same drawbacks of the cutting-plane method, i.e., oscillation and slow convergence, compounded with the fact that the master problem is combinatorial. To overcome this drawback we present a stabilized Benders decomposition whose master is restricted to a neighborhood of successful candidates by local branching constraints, which are dynamically adjusted, and even dropped, during the iterations. Our experiments with randomly generated and real-world CSP instances with up to 3600 binary variables, 90M continuous variables and 15M inequality constraints show that our approach is competitive with both the current state-of-the-art (cutting-plane-based) code for cell suppression, and the Benders implementation in CPLEX 12.7. In some instances, stabilized Benders is able to quickly provide a very good solution in less than one minute, while the other approaches were not able to find any feasible solution in one hour.
CitationBaena, D, Castro, J., Frangioni, A. "Stabilized Benders methods for large-scale combinatorial optimization, with appllication to data privacy". 2017. 
URIhttp://hdl.handle.net/2117/116306
URL other repositoryhttp://www-eio.upc.edu/~jcastro/publications/reports/dr2017-03.pdf
Collections
  • Departament d'Estadística i Investigació Operativa - Reports de recerca [90]
  • GNOM - Grup d'Optimització Numèrica i Modelització - Reports de recerca [35]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
dr2017-03.pdfReport de recerca650,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina