Show simple item record

dc.contributor.authorBaste, Julien
dc.contributor.authorNoy Serrano, Marcos
dc.contributor.authorSau, Ignasi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2018-04-04T14:01:07Z
dc.date.available2019-07-01T08:05:48Z
dc.date.issued2018-06-01
dc.identifier.citationBaste, J., Noy, M., Sau, I. On the number of labeled graphs of bounded treewidth. "European journal of combinatorics", 1 Juny 2018, vol. 71, p. 12.
dc.identifier.issn0195-6698
dc.identifier.otherhttps://arxiv.org/abs/1604.07273
dc.identifier.urihttp://hdl.handle.net/2117/115956
dc.description.abstractLet be Tnk the number of labeled graphs on vertices and treewidth at most (equivalently, the number o<f labeled partial -trees). We show that [...] for k>1 and some explicit absolute constant c>0. Disregarding terms depending only on k, the gap between the lower and upper bound is of order (log k)n. The upper bound is a direct consequence of the well-known formula for the number of labeled lambda-trees, while the lower bound is obtained from an explicit construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most k .
dc.format.extent1 p.
dc.language.isoeng
dc.titleOn the number of labeled graphs of bounded treewidth
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. MD - Matemàtica Discreta
dc.identifier.doi10.1016/j.ejc.2018.02.030
dc.subject.ams05C85
dc.subject.ams05C30
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007%2F978-3-319-68705-6_7
dc.rights.accessOpen Access
drac.iddocument22026796
dc.description.versionPostprint (published version)
upcommons.citation.authorBaste, J., Noy, M., Sau, I.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameEuropean journal of combinatorics
upcommons.citation.volume71
upcommons.citation.startingPage12
upcommons.citation.endingPage12


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder