Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.757 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors

Thumbnail
View/Open
Article (2,546Mb)
Share:
 
 
10.1088/1741-2552/aa684c
 
  View Usage Statistics
Cita com:
hdl:2117/115929

Show full item record
Migliorelli Falcone, Carolina MercedesMés informació
Alonso López, Joan FrancescMés informacióMés informacióMés informació
Romero Lafuente, SergioMés informacióMés informacióMés informació
Nowak, Rafal
Russi Tintoré, Antonio
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Document typeArticle
Defense date2017-08-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Objective. In epilepsy, high-frequency oscillations (HFOs) are expressively linked to the seizure onset zone (SOZ). The detection of HFOs in the noninvasive signals from scalp electroencephalography (EEG) and magnetoencephalography (MEG) is still a challenging task. The aim of this study was to automate the detection of ripples in MEG signals by reducing the high-frequency noise using beamformer-based virtual sensors (VSs) and applying an automatic procedure for exploring the time-frequency content of the detected events. Approach. Two-hundred seconds of MEG signal and simultaneous iEEG were selected from nine patients with refractory epilepsy. A two-stage algorithm was implemented. Firstly, beamforming was applied to the whole head to delimitate the region of interest (ROI) within a coarse grid of MEG-VS. Secondly, a beamformer using a finer grid in the ROI was computed. The automatic detection of ripples was performed using the time-frequency response provided by the Stockwell transform. Performance was evaluated through comparisons with simultaneous iEEG signals. Main results. ROIs were located within the seizure-generating lobes in the nine subjects. Precision and sensitivity values were 79.18% and 68.88%, respectively, by considering iEEG-detected events as benchmarks. A higher number of ripples were detected inside the ROI compared to the same region in the contralateral lobe. Significance. The evaluation of interictal ripples using non-invasive techniques can help in the delimitation of the epileptogenic zone and guide placement of intracranial electrodes. This is the first study that automatically detects ripples in MEG in the time domain located within the clinically expected epileptic area taking into account the time-frequency characteristics of the events through the whole signal spectrum. The algorithm was tested against intracranial recordings, the current gold standard. Further studies should explore this approach to enable the localization of noninvasively recorded HFOs to help during pre-surgical planning and to reduce the need for invasive diagnostics.
CitationMigliorelli, C., Alonso, J.F., Romero, S., Nowak, R., Russi, A., Mañanas, M.A. Automated detection of epileptic ripples in MEG using beamformer-based virtual sensors. "Journal of neural engineering", 1 Agost 2017, vol. 14, núm. 4, p. 2-15. 
URIhttp://hdl.handle.net/2117/115929
DOI10.1088/1741-2552/aa684c
ISSN1741-2560
Publisher versionhttp://iopscience.iop.org/article/10.1088/1741-2552/aa684c/meta;jsessionid=E50E983429833A84967664D178F3AED8.c4.iopscience.cld.iop.org
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.278]
  • BIOART - BIOsignal Analysis for Rehabilitation and Therapy - Articles de revista [65]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Migliorelli_2017_J._Neural_Eng._14_046013.pdfArticle2,546MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina