Energy efficiency and network performance: A reality check in SDN-based 5G systems
View/Open
Cita com:
hdl:2117/115867
Document typeArticle
Defense date2017-12-14
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The increasing power consumption and related environmental implications currently generated by large data networks have become a major concern over the last decade. Given the drastic traffic increase expected in 5G dense environments, the energy consumption problem becomes even more concerning and challenging. In this context, Software-Defined Networks (SDN), a key technology enabler for 5G systems, can be seen as an attractive solution. In these programmable networks, an energy-aware solution could be easily implemented leveraging the capabilities provided by control and data plane separation. This paper investigates the impact of energy-aware routing on network performance. To that end, we propose a novel energy-aware mechanism that reduces the number of active links in SDN with multiple controllers, considering in-band control traffic. The proposed strategy exploits knowledge of the network topology combined with traffic engineering techniques to reduce the overall power consumption. Therefore, two heuristic algorithms are designed: a static network configuration and a dynamic energy-aware routing. Significant values of switched-off links are reached in the simulations where real topologies and demands data are used. Moreover, the obtained results confirm that crucial network parameters such as control traffic delay, data path latency, link utilization and Ternary Content Addressable Memory (TCAM) occupation are affected by the performance-agnostic energy-aware model.
CitationFernández-Fernández, A., Cervelló-Pastor, C., Ochoa-Aday, L. Energy efficiency and network performance: A reality check in SDN-based 5G systems. "Energies", 14 Desembre 2017, vol. 10, núm. 12.
ISSN1996-1073
Publisher versionhttp://www.mdpi.com/1996-1073/10/12/2132
Files | Description | Size | Format | View |
---|---|---|---|---|
energies-10-02132-v2.pdf | Artículo principal | 1,753Mb | View/Open |