Show simple item record

dc.contributor.authorLeseduarte Milán, María Carme
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2018-03-23T09:31:04Z
dc.date.available2019-01-19T01:30:39Z
dc.date.issued2018-04
dc.identifier.citationLeseduarte, M. C., Quintanilla, R. Spatial behavior in high order partial differential equations. "Mathematical methods in the applied sciences", Abril 2018, vol. 41, núm. 6, p. 2480-2493.
dc.identifier.issn0170-4214
dc.identifier.urihttp://hdl.handle.net/2117/115596
dc.description.abstractIn this paper we study the spatial behavior of solutions to the equations obtained by taking formal Taylor approximations to the heat conduction dual-phase-lag and three-phase-lag theories, reflecting Saint-Venant's principle. In a recent paper, two families of cases for high order partial differential equations were studied. Here we investigate a third family of cases which corresponds to the fact that a certain condition on the time derivative must be satis ed. We also study the spatial behavior of a thermoelastic problem. We obtain a Phragmén-Lindelöf alternative for the solutions in both cases. The main tool to handle these problems is the use of an exponentially weighted Poincaré inequality.
dc.format.extent14 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals::Equacions en derivades parcials
dc.subject.lcshDifferential equations, Hyperbolic
dc.subject.lcshHeat --Transmission -- Mathematical models
dc.subject.otherModels in heat conduction
dc.subject.otherSpatial stability
dc.subject.otherSaint-Venant's principle
dc.titleSpatial behavior in high order partial differential equations
dc.typeArticle
dc.subject.lemacEquacions diferencials hiperbòliques
dc.subject.lemacCalor -- Transmissió -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1002/mma.4753
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations::35L Partial differential equations of hyperbolic type
dc.subject.amsClassificació AMS::80 Classical thermodynamics, heat transfer::80A Thermodynamics and heat transfer
dc.rights.accessOpen Access
local.identifier.drac22015146
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
local.citation.authorLeseduarte, M. C.; Quintanilla, R.
local.citation.publicationNameMathematical methods in the applied sciences
local.citation.volume41
local.citation.number6
local.citation.startingPage2480
local.citation.endingPage2493


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder