Show simple item record

dc.contributor.authorDe León, Manuel
dc.contributor.authorPrieto Martínez, Pedro Daniel
dc.contributor.authorRomán Roy, Narciso
dc.contributor.authorVilariño Fernández, Silvia
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2018-03-19T10:04:33Z
dc.date.available2018-09-01T00:30:29Z
dc.date.issued2017-09-01
dc.identifier.citationDe León, M., P.D. Prieto-Martínez, Roman-Roy, N., Vilariño Fernández, S. Hamilton-Jacobi theory in multisymplectic classical field theories. "Journal of mathematical physics", 1 Setembre 2017, vol. 58, p. 2-37.
dc.identifier.issn0022-2488
dc.identifier.otherhttps://arxiv.org/pdf/1504.02020.pdf
dc.identifier.urihttp://hdl.handle.net/2117/115384
dc.description.abstractThe geometric framework for the Hamilton-Jacobi theory developed in the studies of Carinena et al. [Int. J. Geom. Methods Mod. Phys. 3(7), 1417-1458 (2006)], Carinena et al. [Int. J. Geom. Methods Mod. Phys. 13(2), 1650017 (2015)], and de Léon et al. [Variations, Geometry and Physics (Nova Science Publishers, New York, 2009)] is extended for multisymplectic first-order classical field theories. The Hamilton-Jacobi problem is stated for the Lagrangian and the Hamiltonian formalisms of these theories as a particular case of a more general problem, and the classical Hamilton-Jacobi equation for field theories is recovered from this geometrical setting. Particular and complete solutions to these problems are defined and characterized in several equivalent ways in both formalisms, and the equivalence between them is proved. The use of distributions in jet bundles that represent the solutions to the field equations is the fundamental tool in this formulation. Some examples are analyzed and, in particular, the Hamilton-Jacobi equation for non-autonomous mechanical systems is obtained as a special case of our results.
dc.format.extent36 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Geometria::Geometria diferencial
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshDifferential geometry
dc.subject.lcshField theory (Physics)
dc.titleHamilton-Jacobi theory in multisymplectic classical field theories
dc.typeArticle
dc.subject.lemacGeometria diferencial
dc.subject.lemacCamps, Teoria dels (Física)
dc.contributor.groupUniversitat Politècnica de Catalunya. DGDSA - Geometria Diferencial, Sistemes Dinàmics i Aplicacions
dc.identifier.doi10.1063/1.5004260
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::53 Differential geometry::53C Global differential geometry
dc.relation.publisherversionhttp://aip.scitation.org/doi/10.1063/1.5004260
dc.rights.accessOpen Access
local.identifier.drac21576038
dc.description.versionPostprint (author's final draft)
local.citation.authorDe León, M.; Prieto-Martínez, P.D.; Roman-Roy, N.; Vilariño Fernández, Silvia
local.citation.publicationNameJournal of mathematical physics
local.citation.volume58
local.citation.startingPage2
local.citation.endingPage37


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder