Differential galois theory and non-integrability of planar polynomial vector fields
View/Open
ALMP2_JDEfinal.pdf (416,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
ALMP2_JDEfinal.pdf (416,0Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/115168
Document typeArticle
Defense date2018-02-26
Rights accessRestricted access - publisher's policy
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the “Risch algorithm”. In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function
CitationLazaro, J. Tomás, Pantazi, C., Acosta, P., Morales, J. Differential galois theory and non-integrability of planar polynomial vector fields. "Journal of differential equations", 26 Febrer 2018, vol. 264, núm. 12, p.7183-7212
ISSN0022-0396
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0022039618300998
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
ALMP2_JDEfinal.pdf![]() | 416,0Kb | Restricted access | ||
ALMP2_JDEfinal.pdf![]() | 416,0Kb | Restricted access |