Show simple item record

dc.contributor.authorSekulic, Ivan
dc.contributor.authorÚbeda Farré, Eduard
dc.contributor.authorRius Casals, Juan Manuel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2018-03-13T10:18:17Z
dc.date.available2018-03-13T10:18:17Z
dc.date.issued2017
dc.identifier.citationSekulic, I., Ubeda, E., Rius, J. Nonconforming discretization of the PMCHWT integral equation applied to arbitrarily shaped dielectric objects. A: European Conference on Antennas and Propagation. "2017 11th European Conferenceon Antennas and Propagation (EUCAP 2017): Paris, France: 19-24 March 2017". Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 311-314.
dc.identifier.isbn978-8-8907-0187-0
dc.identifier.urihttp://hdl.handle.net/2117/115089
dc.description©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractThe Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) integral equation is widely used in the scattering analysis of dielectric bodies. The RWG set is normally adopted to expand the electric and magnetic currents in the Method of Moments (MoM) discretization of the PMCHWT formulation. This set preserves normal continuity across edges in the expansion of currents. However, in the analysis of composite objects, the imposition of such continuity constraint around junctions, where several regions intersect, becomes convoluted. We present a new nonconforming discretization of the PMCHWT formulation so that currents are expanded with no continuity constraint across edges. This becomes well-suited for the analysis of composite objects or nonconformal meshes, where some adjacent facets have no common edges. We show RCS results where the nonconforming PMCHWT implementation, facet-oriented, shows similar or better accuracy as the conventional approach, edge-oriented, for a given degree of meshing.
dc.format.extent4 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subjectÀrees temàtiques de la UPC::Física::Electromagnetisme
dc.subjectÀrees temàtiques de la UPC::Energies::Energia elèctrica::Electricitat
dc.subject.lcshMoments method (Statistics)
dc.subject.lcshIntegral equations
dc.subject.otherIntegral equations
dc.subject.otherMethod of Moments
dc.subject.otherPMCHWT formulation
dc.titleNonconforming discretization of the PMCHWT integral equation applied to arbitrarily shaped dielectric objects
dc.typeConference report
dc.subject.lemacEquacions integrals
dc.subject.lemacEstadística -- Mètodes
dc.contributor.groupUniversitat Politècnica de Catalunya. ANTENNALAB - Grup d'Antenes i Sistemes Radio
dc.identifier.doi10.23919/EuCAP.2017.7928396
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7928396/
dc.rights.accessOpen Access
drac.iddocument21982904
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorSekulic, I.; Ubeda, E.; Rius, J.
upcommons.citation.contributorEuropean Conference on Antennas and Propagation
upcommons.citation.publishedtrue
upcommons.citation.publicationName2017 11th European Conferenceon Antennas and Propagation (EUCAP 2017): Paris, France: 19-24 March 2017
upcommons.citation.startingPage311
upcommons.citation.endingPage314


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder