Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.103 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Facultat d'Informàtica de Barcelona
  • Grau en Enginyeria Informàtica (Pla 2010)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Facultat d'Informàtica de Barcelona
  • Grau en Enginyeria Informàtica (Pla 2010)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gesture recognition using histograms of optical flow

Thumbnail
View/Open
128478.pdf (448,5Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/115001

Show full item record
Wen, Ruochen
Tutor / directorCliment Vilaró, JoanMés informacióMés informacióMés informació
Document typeBachelor thesis
Date2017-06
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
In the field of Computer Vision, Gesture Recognition is kind of crucial problem. What differ video classification from normal image classification is that the enormous amount number of video data can not be ignored, because those complex data could lead to significant decline of computational efficiency, Therefore, this article mainly focus on how to obtain a video classification with both accuracy and efficiency in the meanwhile. In order to create a n ideal video classification system, the article use an improved speed-up Bag-of-Words model as basic pipeline. In each part of the pipeline, we apply and evaluate various strategies. In particular, in the step of feature extraction, we create a type of fast information feature descriptor for video, which is called Histogram of Optical Flow. Besides, we try to modify frame sampling rate of video, aiming to reduce calculation. In the process of creating features, we use sampling rate which is same to the size of a block. In this way, each block could be used repeatedly and the calculation will be reduced. When building visual word vocabulary and using SVM for classification, we use different methods to find a best performance of our system. As a final result, we get a trade-off between efficiency and accuracy of our gesture recognition system.
SubjectsPattern recognition systems, Optical communications, Reconeixement de formes (Informàtica), Comunicacions òptiques
DegreeGRAU EN ENGINYERIA INFORMÀTICA (Pla 2010)
URIhttp://hdl.handle.net/2117/115001
Collections
  • Facultat d'Informàtica de Barcelona - Grau en Enginyeria Informàtica (Pla 2010) [2.255]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
128478.pdf448,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina