Bridging deep and kernel methods
View/Open
Cita com:
hdl:2117/114983
Document typeConference report
Defense date2017
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
There has been some exciting major progress in recent years in data analysis methods, including a variety of deep learning architectures, as well as further advances in kernel-based learning methods, which have demonstrated predictive superiority. In this paper we provide a brief
motivated survey of recent proposals to explicitly or implicitly combine kernel methods with the notion of deep learning networks.
CitationBelanche, Ll., Ruiz, M. Bridging deep and kernel methods. A: European Symposium on Artificial Neural Networks. "ESANN2017: 25th European Symposium on Artificial Neural Networks: Bruges, Belgium, April 26-27-28". 2017, p. 1-10.
Collections
- Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.289]
- SOCO - Soft Computing - Ponències/Comunicacions de congressos [110]
- VEU - Grup de Tractament de la Parla - Ponències/Comunicacions de congressos [437]
- Departament de Teoria del Senyal i Comunicacions - Ponències/Comunicacions de congressos [3.359]
Files | Description | Size | Format | View |
---|---|---|---|---|
sp-session-FINAL.pdf | 145,8Kb | View/Open |