dc.contributor.author | Ntinas, Vasileios |
dc.contributor.author | Vourkas, Ioannis |
dc.contributor.author | Abusleme, Angel |
dc.contributor.author | Sirakoulis, Georgios |
dc.contributor.author | Rubio Sola, Jose Antonio |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2018-02-28T18:07:44Z |
dc.date.available | 2018-02-28T18:07:44Z |
dc.date.issued | 2018-02-01 |
dc.identifier.citation | Ntinas, V., Vourkas, I., Abusleme, A., Sirakoulis, G., Rubio, A. Experimental study of artificial neural networks using a digital memristor simulator. "IEEE Transactions on Neural Networks and Learning Systems", 1 Febrer 2018, vol. 29, núm. 10, p. 5098-5110. |
dc.identifier.issn | 2162-237X |
dc.identifier.uri | http://hdl.handle.net/2117/114660 |
dc.description | © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
dc.description.abstract | This paper presents a fully digital implementation of a memristor hardware simulator, as the core of an emulator, based on a behavioral model of voltage-controlled threshold-type bipolar memristors. Compared to other analog solutions, the proposed digital design is compact, easily reconfigurable, demonstrates very good matching with the mathematical model on which it is based, and complies with all the required features for memristor emulators. We validated its functionality using Altera Quartus II and ModelSim tools targeting low-cost yet powerful field programmable gate array (FPGA) families. We tested its suitability for complex memristive circuits as well as its synapse functioning in artificial neural networks (ANNs), implementing examples of associative memory and unsupervised learning of spatio-temporal correlations in parallel input streams using a simplified STDP. We provide the full circuit schematics of all our digital circuit designs and comment on the required hardware resources and their scaling trends, thus presenting a design framework for applications based on our hardware simulator. |
dc.format.extent | 13 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Enginyeria electrònica::Circuits electrònics |
dc.subject | Àrees temàtiques de la UPC::Enginyeria electrònica::Microelectrònica::Circuits integrats |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.lcsh | Integrated circuits |
dc.subject.other | Associative memory |
dc.subject.other | Computing |
dc.subject.other | Emulator |
dc.subject.other | Memristor |
dc.subject.other | Neural network |
dc.subject.other | Neuromorphic |
dc.subject.other | Resistive switching |
dc.title | Experimental study of artificial neural networks using a digital memristor simulator |
dc.type | Article |
dc.subject.lemac | Xarxes neuronals (Informàtica) |
dc.subject.lemac | Circuits integrats |
dc.contributor.group | Universitat Politècnica de Catalunya. HIPICS - Grup de Circuits i Sistemes Integrats d'Altes Prestacions |
dc.identifier.doi | 10.1109/TNNLS.2018.2791458 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://ieeexplore.ieee.org/document/8278839/ |
dc.rights.access | Open Access |
local.identifier.drac | 21998978 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO//TEC2013-45638-C3-2-R/ES/APROXIMACION MULTINIVEL AL DISEÑO ORIENTADO A LA FIABILIDAD DE CIRCUITOS INTEGRADOS ANALOGICOS Y DIGITALES/ |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO/1PE/TEC2016-75151-C3-2-R |
local.citation.author | Ntinas, V.; Vourkas, I.; Abusleme, A.; Sirakoulis, G.; Rubio, A. |
local.citation.publicationName | IEEE Transactions on Neural Networks and Learning Systems |
local.citation.startingPage | 1 |
local.citation.endingPage | 13 |