Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.885 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Instituts de recerca
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3D human pose estimation from a single image via distance matrix regression

Thumbnail
View/Open
1970-3D-Human-Pose-Estimation-from-a-Single-Image-via-Distance-Matrix-Regression.pdf (6,363Mb)
 
10.1109/CVPR.2017.170
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/114318

Show full item record
Moreno-Noguer, FrancescMés informació
Document typeConference report
Defense date2017
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
This paper addresses the problem of 3D human pose estimation from a single image. We follow a standard two-step pipeline by first detecting the 2D position of the N body joints, and then using these observations to infer 3D pose. For the first step, we use a recent CNN-based detector. For the second step, most existing approaches perform 2N-to-3N regression of the Cartesian joint coordinates. We show that more precise pose estimates can be obtained by representing both the 2D and 3D human poses using $Ntimes N$ distance matrices, and formulating the problem as a 2D-to-3D distance matrix regression. For learning such a regressor we leverage on simple Neural Network architectures, which by construction, enforce positivity and symmetry of the predicted matrices. The approach has also the advantage to naturally handle missing observations and allowing to hypothesize the position of non-observed joints. Quantitative results on Humaneva and Human3.6M datasets demonstrate consistent performance gains over state-of-the-art. Qualitative evaluation on the images in-the-wild of the LSP dataset, using the regressor learned on Human3.6M, reveals very promising generalization results.
Description
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationMoreno-Noguer, F. 3D human pose estimation from a single image via distance matrix regression. A: IEEE Conference on Computer Vision and Pattern Recognition. "Proceedings of the 2017 IEEE Computer Society Conference on Computer Vision and Pattern Recognition". Honolulu: Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 1561-1570. 
URIhttp://hdl.handle.net/2117/114318
DOI10.1109/CVPR.2017.170
ISBN1063-6919
Publisher versionhttp://ieeexplore.ieee.org/document/8099653/
Collections
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [609]
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Ponències/Comunicacions de congressos [283]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1970-3D-Human-P ... ance-Matrix-Regression.pdf6,363MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina