Show simple item record

dc.contributorCristal Kestelman, Adrián
dc.contributorValero Cortés, Mateo
dc.contributor.authorNemirovsky, Daniel A.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2018-02-12T01:34:12Z
dc.date.available2018-02-12T01:34:12Z
dc.date.issued2017-10-30
dc.identifier.citationNemirovsky, D.A. Improving heterogeneous system efficiency : architecture, scheduling, and machine learning. Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2017.
dc.identifier.urihttp://hdl.handle.net/2117/114007
dc.description.abstractComputer architects are beginning to embrace heterogeneous systems as an effective method to utilize increases in transistor densities for executing a diverse range of workloads under varying performance and energy constraints. As heterogeneous systems become more ubiquitous, architects will need to develop novel CPU scheduling techniques capable of exploiting the diversity of computational resources. In recognizing hardware diversity, state-of-the-art heterogeneous schedulers are able to produce significant performance improvements over their predecessors and enable more flexible system designs. Nearly all of these, however, are unable to efficiently identify the mapping schemes which will result in the highest system performance. Accurately estimating the performance of applications on different heterogeneous resources can provide a significant advantage to heterogeneous schedulers for identifying a performance maximizing mapping scheme to improve system performance. Recent advances in machine learning techniques including artificial neural networks have led to the development of powerful and practical prediction models for a variety of fields. As of yet, however, no significant leaps have been taken towards employing machine learning for heterogeneous scheduling in order to maximize system throughput. The core issue we approach is how to understand and utilize the rise of heterogeneous architectures, benefits of heterogeneous scheduling, and the promise of machine learning techniques with respect to maximizing system performance. We present studies that promote a future computing model capable of supporting massive hardware diversity, discuss the constraints faced by heterogeneous designers, explore the advantages and shortcomings of conventional heterogeneous schedulers, and pioneer applying machine learning to optimize mapping and system throughput. The goal of this thesis is to highlight the importance of efficiently exploiting heterogeneity and to validate the opportunities that machine learning can offer for various areas in computer architecture.
dc.description.abstractArquitectos de computadores estan empesando a diseñar systemas heterogeneos como una manera efficiente de usar los incrementos en densidades de transistors para ejecutar una gran diversidad de programas corriendo debajo de differentes condiciones y requisitos de energia y rendimiento (performance). En cuanto los sistemas heterogeneos van ganando popularidad de uso, arquitectos van a necesitar a diseñar nuevas formas de hacer el scheduling de las applicaciones en los cores distintos de los CPUs. Schedulers nuevos que tienen en cuenta la heterogeniedad de los recursos en el hardware logran importantes beneficios en terminos de rendimiento en comparacion con schedulers hecho para sistemas homogenios. Pero, casi todos de estos schedulers heterogeneos no son capaz de poder identificar la esquema de mapping que produce el rendimiento maximo dado el estado de los cores y las applicaciones. Estimando con precision el rendimiento de los programas ejecutando sobre diferentes cores de un CPU es un a gran ventaja para poder identificar el mapping para lograr el mejor rendimiento posible para el proximo scheduling quantum. Desarollos nuevos en la area de machine learning, como redes neurales, han producido predictores muy potentes y con gran precision in disciplinas numerosas. Pero en estos momentos, la aplicacion de metodos de machine learning no se han casi explorados para poder mejorar la eficiencia de los CPUs y menos para mejorar los schedulers para sistemas heterogeneos. El tema de enfoque en esta tesis es como poder entender y utilizar los sistemas heterogeneos, los beneficios de scheduling para estos sistemas, y como aprovechar las promesas de los metodos de machine learning con respeto a maximizer el redimiento de el Sistema. Presentamos estudios que dan una esquema para un modelo de computacion para el futuro capaz de dar suporte a recursos heterogeneos en gran escala, discutimos las restricciones enfrentados por diseñadores de sistemas heterogeneos, exploramos las ventajas y desventajas de las ultimas schedulers heterogeneos, y abrimos el camino de usar metodos de machine learning para optimizer el mapping y rendimiento de un sistema heterogeneo. El objetivo de esta tesis es destacar la imporancia de explotando eficientemente la heterogenidad de los recursos y tambien validar las oportunidades para mejorar la eficiencia en diferente areas de arquitectura de computadoras que pueden ser realizadas gracias a machine learning.
dc.format.extent179 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.otherComputer architecture
dc.subject.otherMulti core
dc.subject.otherHeterogeneous systems
dc.subject.otherScheduling
dc.subject.otherMachine learning
dc.subject.otherDeep learning
dc.titleImproving heterogeneous system efficiency : architecture, scheduling, and machine learning
dc.typeDoctoral thesis
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacArquitectura d'ordinadors
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/461499


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record