Show simple item record

dc.contributor.authorEscala Ribas, Alex
dc.contributor.authorHerold, Gottfried
dc.contributor.authorKiltz, Eike
dc.contributor.authorRàfols Salvador, Carla
dc.contributor.authorVillar Santos, Jorge Luis
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2018-02-06T13:34:48Z
dc.date.available2018-02-06T13:34:48Z
dc.date.issued2017-01
dc.identifier.citationEscala, A., Herold, G., Kiltz, E., Rafols, C., Villar, J. An algebraic framework for Diffie-Hellman assumptions. "Journal of cryptology", Gener 2017, vol. 30, núm. 1, p. 242-288.
dc.identifier.issn0933-2790
dc.identifier.urihttp://hdl.handle.net/2117/113812
dc.descriptionThe final publication is available at Springer via http://dx.doi.org/10.1007/s00145-015-9220-6
dc.description.abstractWe put forward a new algebraic framework to generalize and analyze Di e-Hellman like Decisional Assumptions which allows us to argue about security and applications by considering only algebraic properties. Our D`;k-MDDH assumption states that it is hard to decide whether a vector in G` is linearly dependent of the columns of some matrix in G` k sampled according to distribution D`;k. It covers known assumptions such as DDH, 2-Lin (linear assumption), and k-Lin (the k-linear assumption). Using our algebraic viewpoint, we can relate the generic hardness of our assumptions in m-linear groups to the irreducibility of certain polynomials which describe the output of D`;k. We use the hardness results to nd new distributions for which the D`;k-MDDH-Assumption holds generically in m-linear groups. In particular, our new assumptions 2-SCasc and 2-ILin are generically hard in bilinear groups and, compared to 2-Lin, have shorter description size, which is a relevant parameter for e ciency in many applications. These results support using our new assumptions as natural replacements for the 2-Lin Assumption which was already used in a large number of applications. To illustrate the conceptual advantages of our algebraic framework, we construct several fundamental primitives based on any MDDH-Assumption. In particular, we can give many instantiations of a primitive in a compact way, including public-key encryption, hash-proof systems, pseudo-random functions, and Groth-Sahai NIZK and NIWI proofs. As an independent contribution we give more e cient NIZK and NIWI proofs for membership in a subgroup of G`. The results imply very signi cant e ciency improvements for a large number of schemes.
dc.format.extent47 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Programació matemàtica
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
dc.subject.lcshCombinatorial analysis
dc.subject.lcshProbabilities
dc.subject.otherDi e-Hellman Assumption
dc.subject.otherGeneric Hardness
dc.subject.otherGroth-Sahai proofs
dc.subject.otherHash Proof Systems
dc.subject.otherPublic-key Encryption
dc.titleAn algebraic framework for Diffie-Hellman assumptions
dc.typeArticle
dc.subject.lemacCombinacions (Matemàtica)
dc.subject.lemacProbabilitats
dc.contributor.groupUniversitat Politècnica de Catalunya. MAK - Matemàtica Aplicada a la Criptografia
dc.identifier.doi10.1007/s00145-015-9220-6
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::05 Combinatorics::05E Algebraic combinatorics
dc.subject.amsClassificació AMS::11 Number theory::11K Probabilistic theory: distribution modulo $1$; metric theory of algorithms
dc.relation.publisherversionhttp://link.springer.com/article/10.1007/s00145-015-9220-6
dc.rights.accessOpen Access
local.identifier.drac19721875
dc.description.versionPostprint (author's final draft)
local.citation.authorEscala, A.; Herold, G.; Kiltz, E.; Rafols, C.; Villar, J.
local.citation.publicationNameJournal of cryptology
local.citation.volume30
local.citation.number1
local.citation.startingPage242
local.citation.endingPage288


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record