Lie-algebroid formulation of k-cosymplectic classical field theories
View/Open
poster-XVIIlie_algebroid.pdf (157,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeConference lecture
Defense date2009
Rights accessRestricted access - publisher's policy
Abstract
The k-cosymplectic formalism is the generalization to field theories of the cosymplectic formalism, which is the geometric framework for describing non-autonomous dynamical systems.
In [5], A. Weinstein introduced a new geometric framework for giving a more generic description of Lagrangian mechanics. This approach was followed and completed by other authors for studying different kinds of problems concerning mechanical systems (a good survey on this subject is [1]). The extension of this formalism to classical field theories has been made, in [3] for the multisymplectic formalism.
This poster, which is based on the developments made in [4], is devoted to presenting a Hamiltonian k-cosymplectic description of field theories in terms of Lie algebroids.
CitationRoman-Roy, N.; Salgado, M.; Vilariño, S. Lie-algebroid formulation of k-cosymplectic classical field theories. A: International Fall Workshop on Geometry and Physics. "XVII International Fall Workshop on Geometry and Physics". Castro Urdiales: 2009, p. 176-181.
DL0094-243X
ISBN978-O-7354-0666-7
Files | Description | Size | Format | View |
---|---|---|---|---|
poster-XVIIlie_algebroid.pdf![]() | 157,8Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder