Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers

View/Open
Cita com:
hdl:2117/113689
Document typeConference report
Defense date2017
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Freezing of gait (FOG) is one of the most incapacitating symptoms among the motor alterations of Parkinson’s disease (PD). Manifesting FOG episodes reduce patients’ quality of life and their autonomy to perform daily living activities, while it may provoke falls. Accurate ambulatory FOG assessment would enable non-pharmacologic support based on cues and would provide relevant information to neurologists on the disease evolution.
This paper presents a method for FOG detection based on deep learning and signal processing techniques. This is, to the best of our knowledge, the first time that FOG detection is addressed with deep learning. The evaluation of the model has been done based on the data from 15 PD patients who manifested FOG. An inertial measurement unit placed at the left side of the waist recorded tri-axial accelerometer, gyroscope and magnetometer signals. Our approach achieved comparable results to the state-of-the-art, reaching validation performances of 88.6% and 78% for sensitivity and specificity respectively.
Description
The final publication is available at Springer via https://doi.org/10.1007/978-3-319-59147-6_30
CitationCamps, J., Sama, A., Martin, M., Rodriguez-Martin, D., Perez, C., Alcaine, S., Mestre, B., Prats, A., Crespo, M. Cruz, Cabestany, J., Bayés, À., Catala, A. Deep learning for detecting freezing of gait episodes in Parkinson’s disease based on accelerometers. A: International Workshop on Artificial Neural Networks. "Advances in Computational Intelligence : 14th International Work-Conference on Artificial Neural Networks, IWANN 2017". Cadiz: 2017, p. 344-355.
ISBN978-3-319-59147-6
Publisher versionhttps://link.springer.com/chapter/10.1007/978-3-319-59147-6_30
Collections
- Departament de Ciències de la Computació - Ponències/Comunicacions de congressos [1.249]
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.451]
- KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Ponències/Comunicacions de congressos [110]
- CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma - Ponències/Comunicacions de congressos [31]
- Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.664]
Files | Description | Size | Format | View |
---|---|---|---|---|
Camps et al. - ... on accelerometers (1).pdf | Article | 406,5Kb | View/Open |