Mostra el registre d'ítem simple

dc.contributorPeña Monferrer, Antonio José
dc.contributorAyguadé Parra, Eduard
dc.contributor.authorGarcía Flores, Víctor
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2018-02-05T01:31:55Z
dc.date.available2018-02-05T01:31:55Z
dc.date.issued2017-10-02
dc.identifier.citationGarcía Flores, V. "Memory hierarchies for future HPC architectures". Tesi doctoral, UPC, Departament d'Arquitectura de Computadors, 2017.
dc.identifier.urihttp://hdl.handle.net/2117/113684
dc.description.abstractEfficiently managing the memory subsystem of modern multi/manycore architectures is increasingly becoming a challenge as systems grow in complexity and heterogeneity. In the field of high performance computing (HPC) in particular, where massively parallel architectures are used and input sets of several terabytes are common, careful management of the memory hierarchy is crucial to exploit the full computing power of these systems. The goal of this thesis is to provide computer architects with valuable information to guide the design of future systems, and in particular of those more widely used in the field of HPC, i.e., symmetric multicore processors (SMPs) and GPUs. With that aim, we present an analysis of some of the inefficiencies and shortcomings of current memory management techniques and propose two novel schemes leveraging the opportunities that arise from the use of new and emerging programming models and computing paradigms. The first contribution of this thesis is a block prefetching mechanism for task-based programming models. Using a task-based programming model simplifies parallel programming and allows for better resource utilization in the supercomputers used in the field of HPC, while enabling sophisticated memory management techniques. The scheme proposed relies on a memory-aware runtime system to guide prefetching while avoiding the main drawbacks of traditional prefetching mechanisms, i.e., cache pollution and lack of timeliness. It leverages the information provided by the user about tasks¿ input data to prefetch contiguous blocks of memory that are certain to be useful. The proposed scheme targets SMPs with large cache hierarchies and uses heuristics to dynamically decide the best cache level to prefetch into without evicting useful data. The focus of this thesis then turns to heterogeneous architectures combining GPUs and traditional multicore processors. The current trend towards tighter coupling of GPU and CPU enables new collaborative computations that tax the memory subsystem in a different manner than previous heterogeneous computations did, and requires careful analysis to understand the trade-offs that are to be expected when designing future memory organizations. The second contribution is an in-depth analysis on the impact of sharing the last-level cache between GPU and CPU cores on a system where the GPU is integrated on the same die as the CPU. The analysis focuses on the effect that a shared cache can have on collaborative computations where GPU and CPU threads concurrently work on a problem and share data at fine granularities. The results presented here show that sharing the last-level cache is largely beneficial as it allows for better resource utilization. In addition, the evaluation shows that collaborative computations benefit significantly from the faster CPU-GPU communication and higher cache hit rates that a shared cache level provides. The final contribution of this thesis analyzes the inefficiencies and drawbacks of demand paging as currently implemented in discrete GPUs by NVIDIA. Then, it proposes a novel memory organization and dynamic migration scheme that allows for efficient data sharing between GPU and CPU, specially when executing collaborative computations where data is migrated back and forth between the two separate memories. This scheme migrates data at cache line granularities transparently to the user and operating system, avoiding false sharing and the unnecessary data transfers that occur with demand paging. The results show that the proposed scheme is able to outperform the baseline system by reducing the migration latency of data that is copied multiple times between the two memories. In addition, analysis of different interconnect latencies shows that fine-grained data sharing between GPU and CPU is feasible as long as future interconnect technologies achieve four to five times lower round-trip times than PCI-Express 3.0.
dc.description.abstractLa gestión eficiente del subsistema de memoria se ha convertido en un problema complejo a la vez que los sistemas crecen en complejidad y heterogeneidad. En el campo de la computación de altas prestaciones (HPC) en particular, donde arquitecturas masivamente paralelas son usadas y entradas de varios terabytes son comunes, una gestión cuidadosa de la jerarquía de memoria es crucial para conseguir explotar todo el potencial de estas arquitecturas. El objetivo de esta tesis es proporcionar a los arquitectos de computadores información valiosa para el diseño de los sistemas del futuro, y en concreto de los más comúnmente usados en el campo de HPC, los procesadores multinúcleo simétricos (SMP) y las tarjetas gráficas (GPU). Para ello, presentamos un análisis de las ineficiencias y los inconvenientes de los sistemas de gestión de memoria actuales, y proponemos dos técnicas nuevas que aprovechan las oportunidades surgidas del uso de nuevos y emergentes modelos de programación y paradigmas de computación. La primera contribución de esta tesis es un mecanismo de prefetch de bloques para modelos de programación basados en tareas. Usando modelos de programación orientados a tareas simplifica la programación paralela y permite hacer un mejor uso de los recursos en los supercomputadores usados en HPC, mientras permiten el uso de sofisticados mecanismos de gestión de memoria. La técnica propuesta se basa en un sistema de runtime para guiar el prefetch de datos mientras evita los principales inconvenientes tradicionalmente asociados con prefetching, la polución de cache y la medida incorrecta de los tiempos. El mecanismo utiliza la información sobre las entradas de las tareas proporcionada por el usuario para prefetchear bloques contiguos de memoria sobre los que hay certeza que serán utilizados. El mecanismo está dirigido a arquitecturas SMP con amplias jerarquías de cache, y usa heurísticas para decidir dinámicamente en qué nivel de caché colocar los datos sin desplazar datos útiles. El focus de la tesis gira luego a arquitecturas heterogéneas que combinan GPUs con procesadores multinúcleo tradicionales. La actual tendencia a unir GPU y CPU permite el uso de una nueva serie de computaciones colaborativas que afectan al subsistema de memoria de forma diferente que las computaciones heterogéneas anteriores, y requiere de un cuidadoso análisis para entender las consecuencias que esto tiene en el diseño de las organizaciones de memoria futuras. La segunda contribución de la tesis es un análisis detallado del impacto que supone compartir el último nivel de cache entre núcleos de GPU y CPU en sistemas donde la GPU está integrada en el mismo chip que la CPU. El análisis se centra en el efecto que la cache compartida tiene en colaboraciones colaborativas donde hilos de GPU y CPU trabajan concurrentemente en un problema y comparten datos a grano fino. Los resultados presentados en esta tesis muestran que compartir el último nivel de cache es mayormente beneficioso ya que permite un mejor uso de los recursos. Además, la evaluación muestra que las computaciones colaborativas se benefician en gran medida de la comunicación más rápida entre GPU y CPU y las mayores tasas de acierto de cache que un nivel de cache compartido proporcionan.
dc.format.extent123 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.titleMemory hierarchies for future HPC architectures
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/461197


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple

Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons: Reconeixement-NoComercial 4.0 Genèrica