Show simple item record

dc.contributor.authorTorres Sánchez, Alejandro
dc.contributor.authorVanegas, Juan Manuel
dc.contributor.authorArroyo Balaguer, Marino
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.identifier.citationTorres, A., Venegas, J., Arroyo, M. Geometric derivation of the microscopic stress: a covariant central force decomposition. "Journal of the mechanics and physics of solids", Agost 2016, vol. 93, p. 224-239.
dc.description.abstractWe revisit the derivation of the microscopic stress, linking the statistical mechanics of particle systems and continuum mechanics. The starting point in our geometric derivation is the Doyle-Ericksen formula, which states that the Cauchy stress tensor is the derivative of the free-energy with respect to the ambient metric tensor and which follows from a covariance argument. Thus, our approach to define the microscopic stress tensor does not rely on the statement of balance of linear momentum as in the classical Irving-Kirkwood-Noll approach. Nevertheless, the resulting stress tensor satisfies balance of linear and angular momentum. Furthermore, our approach removes the ambiguity in the definition of the microscopic stress in the presence of multibody interactions by naturally suggesting a canonical and physically motivated force decomposition into pairwise terms, a key ingredient in this theory. As a result, our approach provides objective expressions to compute a microscopic stress for a system in equilibrium and for force-fields expanded into multibody interactions of arbitrarily high order. We illustrate the proposed methodology with molecular dynamics simulations of a fibrous protein using a force-field involving up to 5-body interactions.
dc.format.extent16 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshStatistical mechanics
dc.subject.otherContinuum mechanics
dc.subject.otherDoyle-Ericksen formula
dc.subject.otherMicroscopic stress tensor
dc.subject.otherStatistical mechanics
dc.titleGeometric derivation of the microscopic stress: a covariant central force decomposition
dc.subject.lemacMecànica estadística
dc.contributor.groupUniversitat Politècnica de Catalunya. LACÀN - Mètodes Numèrics en Ciències Aplicades i Enginyeria
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorTorres, A.; Venegas, J.; Arroyo, M.
local.citation.publicationNameJournal of the mechanics and physics of solids

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain