Show simple item record

dc.contributor.authorBarba Serrahima, Albert
dc.contributor.authorDíez Escudero, Anna
dc.contributor.authorMaazouz, Yassine
dc.contributor.authorRappe, K.
dc.contributor.authorEspañol Pons, Montserrat
dc.contributor.authorMontufar Jiménez, Edgar Benjamin
dc.contributor.authorBonany Mariñosa, Mar
dc.contributor.authorSadowska, Joanna Maria
dc.contributor.authorGuillem Martí, Jordi
dc.contributor.authorOhman, Caroline
dc.contributor.authorPersson, Cecilia
dc.contributor.authorManzanares, Maria Cristina
dc.contributor.authorFranch Serracanta, Jordi
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència dels Materials i Enginyeria Metal·lúrgica
dc.date.accessioned2018-01-31T12:45:05Z
dc.date.available2018-11-08T01:30:21Z
dc.date.issued2017-12-06
dc.identifier.citationBarba, A., Diez-Escudero, A., Maazouz, Y., Rappe, K., Español, M., Montufar, Edgar B., Bonany, M., Sadowska, J., Guillem-Marti, J., Ohman, C., Persson, C., Manzanares, M., Franch Serracanta, Jordi, Ginebra, M.P. Osteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture. "ACS applied materials and interfaces", 6 Desembre 2017, vol. 9, núm. 48, p. 41722-41736.
dc.identifier.issn1944-8244
dc.identifier.urihttp://hdl.handle.net/2117/113454
dc.description.abstractSome biomaterials are osteoinductive, that is, they are able to trigger the osteogenic process by inducing the differentiation of mesenchymal stem cells to the osteogenic lineage. Although the underlying mechanism is still unclear, microporosity and specific surface area (SSA) have been identified as critical factors in material-associated osteoinduction. However, only sintered ceramics, which have a limited range of porosities and SSA, have been analyzed so far. In this work, we were able to extend these ranges to the nanoscale, through the foaming and 3D-printing of biomimetic calcium phosphates, thereby obtaining scaffolds with controlled micro- and nanoporosity and with tailored macropore architectures. Calcium-deficient hydroxyapatite (CDHA) scaffolds were evaluated after 6 and 12 weeks in an ectopic-implantation canine model and compared with two sintered ceramics, biphasic calcium phosphate and ß-tricalcium phosphate. Only foams with spherical, concave macropores and not 3D-printed scaffolds with convex, prismatic macropores induced significant ectopic bone formation. Among them, biomimetic nanostructured CDHA produced the highest incidence of ectopic bone and accelerated bone formation when compared with conventional microstructured sintered calcium phosphates with the same macropore architecture. Moreover, they exhibited different bone formation patterns; in CDHA foams, the new ectopic bone progressively replaced the scaffold, whereas in sintered biphasic calcium phosphate scaffolds, bone was deposited on the surface of the material, progressively filling the pore space. In conclusion, this study demonstrates that the high reactivity of nanostructured biomimetic CDHA combined with a spherical, concave macroporosity allows the pushing of the osteoinduction potential beyond the limits of microstructured calcium phosphate ceramics.
dc.format.extent15 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshTissue engineering
dc.subject.lcshBiomedical materials
dc.subject.lcshCalcium phosphate
dc.subject.lcshThree-dimensional printing
dc.subject.otherosteoinduction
dc.subject.other3D-printing
dc.subject.otherfoaming
dc.subject.othernanostructure
dc.subject.othercalcium phosphate
dc.titleOsteoinduction by foamed and 3D-printed calcium phosphate scaffolds: effect of nanostructure and pore architecture
dc.typeArticle
dc.subject.lemacEnginyeria de teixits
dc.subject.lemacMaterials biomèdics
dc.subject.lemacFosfat de calci
dc.subject.lemacImpressió 3D
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1021/acsami.7b14175
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://pubs.acs.org/doi/10.1021/acsami.7b14175
dc.rights.accessOpen Access
drac.iddocument21694733
dc.description.versionPostprint (author's final draft)
dc.contributor.covenanteeUniversitat Autònoma de Barcelona. Departament de Medicina i Cirurgia Animal
dc.contributor.covenanteeUniversitat de Barcelona. Departament de Patologia i Terapèutica Experimental
upcommons.citation.authorBarba, A., Diez-Escudero, A., Maazouz, Y., Rappe, K., Español, M., Montufar, Edgar B., Bonany, M., Sadowska, J., Guillem-Marti, J., Ohman, C., Persson, C., Manzanares, M., Franch Serracanta, Jordi, Ginebra, M.P.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameACS applied materials and interfaces
upcommons.citation.volume9
upcommons.citation.number48
upcommons.citation.startingPage41722
upcommons.citation.endingPage41736


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain