Show simple item record

dc.contributor.authorNadal Francesch, Sergi
dc.contributor.authorRomero Moral, Óscar
dc.contributor.authorAbelló Gamazo, Alberto
dc.contributor.authorVassiliadis, Panos
dc.contributor.authorVansummeren, Stijn
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.date.accessioned2018-01-30T12:21:39Z
dc.date.available2018-01-30T12:21:39Z
dc.date.issued2017
dc.identifier.citationNadal, S., Romero, O., Abelló, A., Vassiliadis , P., Vansummeren, S. An integration-oriented ontology to govern evolution in big data ecosystems. A: International Workshop On Design, Optimization, Languages and Analytical Processing of Big Data. "Proceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017): Venice, Italy, March 21-24, 2017". Venice: CEUR-WS.org, 2017, p. 1-10.
dc.identifier.isbn1613-0073
dc.identifier.urihttp://hdl.handle.net/2117/113387
dc.description.abstractBig Data architectures allow to flexibly store and process heterogeneous data, from multiple sources, in its original format. The structure of those data, commonly supplied by means of REST APIs, is continuously evolving, forcing data analysts using it need to adapt their analytical processes after each release. This gets more challenging when aiming to perform an integrated or historical analysis of multiple sources. To cope with such complexity, in this paper we present the Big Data Integration ontology, the core construct for a data governance protocol that systematically annotates and integrates data from multiple sources in its original format. To cope with syntactic evolution in the sources, we present an algorithm that semi-automatically adapts the ontology upon new releases. A functional evaluation on real world APIs is performed in order to validate our approach.
dc.format.extent10 p.
dc.language.isoeng
dc.publisherCEUR-WS.org
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació
dc.subject.lcshBig data
dc.subject.lcshOntologies (Information retrieval)
dc.subject.lcshSemantic web
dc.subject.otherModeling
dc.subject.otherSemi-structured data
dc.subject.otherEvolution
dc.subject.otherStream data
dc.titleAn integration-oriented ontology to govern evolution in big data ecosystems
dc.typeConference lecture
dc.subject.lemacMacrodades
dc.subject.lemacOntologies (Informàtica)
dc.subject.lemacWeb semàtica
dc.contributor.groupUniversitat Politècnica de Catalunya. MPI - Modelització i Processament de la Informació
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ceur-ws.org/Vol-1810/DOLAP_paper_09.pdf
dc.rights.accessOpen Access
local.identifier.drac21146181
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/644018/EU/SUpporting evolution and adaptation of PERsonalized Software by Exploiting contextual Data and End-user feedback/SUPERSEDE
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/TIN2016-79269-R
local.citation.authorNadal, S.; Romero, O.; Abelló, A.; Vassiliadis, P.; Vansummeren, S.
local.citation.contributorInternational Workshop On Design, Optimization, Languages and Analytical Processing of Big Data
local.citation.pubplaceVenice
local.citation.publicationNameProceedings of the Workshops of the EDBT/ICDT 2017 Joint Conference (EDBT/ICDT 2017): Venice, Italy, March 21-24, 2017
local.citation.startingPage1
local.citation.endingPage10


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain