Show simple item record

dc.contributor.authorBilalli, Besim
dc.contributor.authorAbelló Gamazo, Alberto
dc.contributor.authorAluja Banet, Tomàs
dc.contributor.authorWrembel, Robert
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2018-01-26T09:24:30Z
dc.date.available2019-06-04T02:30:46Z
dc.date.issued2017-06-03
dc.identifier.citationBilalli, B., Abello, A., Aluja, T., Wrembel, R. Intelligent assistance for data pre-processing. "Computer standards & interfaces", 3 Juny 2017, vol. 57, p. 101-109.
dc.identifier.issn0920-5489
dc.identifier.urihttp://hdl.handle.net/2117/113239
dc.description.abstractA data mining algorithm may perform differently on datasets with different characteristics, e.g., it might perform better on a dataset with continuous attributes rather than with categorical attributes, or the other way around. Typically, a dataset needs to be pre-processed before being mined. Taking into account all the possible pre-processing operators, there exists a staggeringly large number of alternatives. As a consequence, non-experienced users become overwhelmed with pre-processing alternatives. In this paper, we show that the problem can be addressed by automating the pre-processing with the support of meta-learning. To this end, we analyzed a wide range of data pre-processing techniques and a set of classification algorithms. For each classification algorithm that we consider and a given dataset, we are able to automatically suggest the transformations that improve the quality of the results of the algorithm on the dataset. Our approach will help non-expert users to more effectively identify the transformations appropriate to their applications, and hence to achieve improved results.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherElsevier
dc.subjectÀrees temàtiques de la UPC::Informàtica::Enginyeria del software
dc.subject.lcshData mining
dc.subject.otherData pre-processing Data mining Meta-learning
dc.titleIntelligent assistance for data pre-processing
dc.typeArticle
dc.subject.lemacMineria de dades
dc.contributor.groupUniversitat Politècnica de Catalunya. inSSIDE - integrated Software, Service, Information and Data Engineering
dc.contributor.groupUniversitat Politècnica de Catalunya. LIAM - Laboratori de Modelització i Anàlisi de la Informació
dc.identifier.doi10.1016/j.csi.2017.05.004
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0920548916302306?via%3Dihub
dc.rights.accessOpen Access
local.identifier.drac21872723
dc.description.versionPostprint (author's final draft)
local.citation.authorBilalli, B.; Abello, A.; Aluja, T.; Wrembel, R.
local.citation.publicationNameComputer standards & interfaces
local.citation.volume57
local.citation.startingPage101
local.citation.endingPage109


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record