Bringing data analytics to the network nodes for efficient traffic anomalies detection
View/Open
08024981.pdf (538,2Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/113167
Document typeConference report
Defense date2017
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Traffic anomalies can create network congestion, so its prompt and accurate detection would allow network operators to make decisions to guarantee the network performance avoiding services to experience any perturbation. In this paper, we focus on origin-destination (OD) traffic anomalies; to efficiently detect those, we study two different anomaly detection methods based on data analytics and combine them with three monitoring strategies. In view of the short monitoring period needed to reduce anomaly detection, which entails large amount of monitoring data to be collected and analyzed in a centralized repository, we propose bringing data analytics to the network nodes to efficiently detect traffic anomalies, while keeping traffic estimation centralized. Exhaustive simulation results on a realistic network scenario show that the monitoring period should be as low as possible (e.g., 1 min) to keep anomaly detection times low, which clearly motivates to place traffic anomaly detection function in the network nodes.
CitationP. Vela, Alba, Ruiz, M., Velasco, L. Bringing data analytics to the network nodes for efficient traffic anomalies detection. A: International Conference on Transparent Optical Networks. "ICTON 2017: 19th International Conference on Transparent Optical Networks: Girona, Catalonia, Spain, 2-6 July 2017". Girona: Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 1-4.
ISBN978-1-5386-0858-6
Publisher versionhttp://ieeexplore.ieee.org/document/8024981/?reload=true
Files | Description | Size | Format | View |
---|---|---|---|---|
08024981.pdf![]() | 538,2Kb | Restricted access |