Distance 2-domination in prisms of graphs

Cita com:
hdl:2117/112675
Document typeArticle
Defense date2017-01-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
A set of vertices D of a graph G is a distance 2-dominating set of G if the distance between each vertex u ¿ ( V ( G ) - D ) and D is at most two. Let ¿ 2 ( G ) denote the size of a smallest distance 2 -dominating set of G . For any permutation p of the vertex set of G , the prism of G with respect to p is the graph pG obtained from G and a copy G ' of G by joining u ¿ V ( G ) with v ' ¿ V ( G ' ) if and only if v ' = p ( u ) . If ¿ 2 ( pG ) = ¿ 2 ( G ) for any permutation p of V ( G ) , then G is called a universal ¿ 2 - fixer. In this work we characterize the cycles and paths that are universal ¿ 2 -fixers.
CitationHurtado, F., Mora, M., Rivera-Campo, Eduardo, Zuazua, R. Distance 2-domination in prisms of graphs. "Discussiones mathematicae. Graph theory", 1 Gener 2017, vol. 37, núm. 2, p. 383-397.
ISSN1234-3099
Files | Description | Size | Format | View |
---|---|---|---|---|
HMRZ15.pdf | Versió prèvia a l'edició final de l'article en revista. | 332,7Kb | View/Open |