A decoupled KILO-instruction processor
View/Open
Cita com:
hdl:2117/112374
Document typeConference report
Defense date2006
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Building processors with large instruction windows has been proposed as a mechanism for overcoming the memory wall, but finding a feasible and implementable design has been an elusive goal. Traditional processors are composed of structures that do not scale to large instruction windows because of timing and power constraints. However, the behavior of programs executed with large instruction windows gives rise to a natural and simple alternative to scaling. We characterize this phenomenon of execution locality and propose a microarchitecture to exploit it to achieve the benefit of a large instruction window processor with low implementation cost. Execution locality is the tendency of instructions to exhibit high or low latency based on their dependence on memory operations. In this paper we propose a decoupled microarchitecture that executes low latency instructions on a cache processor and high latency instructions on a memory processor. We demonstrate that such a design, using small structures and many in-order components, can achieve the same performance as much more aggressive proposals while minimizing design complexity.
CitationPericàs, M., Cristal, A., González, R., Jiménez, D. A., Valero, M. A decoupled KILO-instruction processor. A: International Symposium on High-Performance Computer Architecture. "The Twelfth International Symposium on High-Performance Computer Architecture, 2006". Texas: Institute of Electrical and Electronics Engineers (IEEE), 2006, p. 52-63.
ISBN0-7803-9368-6
Publisher versionhttp://ieeexplore.ieee.org/document/1598112/
Files | Description | Size | Format | View |
---|---|---|---|---|
01598112.pdf | 311,3Kb | View/Open |