Modeling seismic wave propagation using staggered-grid mimetic finite differences
Tipus de documentArticle
Data publicació2017-04-12
Condicions d'accésAccés obert
Abstract
Mimetic finite difference (MFD) approximations of continuous gradient and divergente operators satisfy a discrete version of the Gauss-Divergente theorem on staggered grids. On the mimetic approximation of this integral conservation principle, an unique boundary flux operator is introduced that also intervenes on the discretization of a given boundary value problem (BVP). In this work, we present a second-order MFD scheme for seismic wave propagation on staggered grids that discretized free surface and absorbing boundary conditions (ABC) with same accuracy order. This scheme is time explicit after coupling a central three-level finite difference (FD) stencil for numerical integration. Here, we briefly discuss the convergence properties of this scheme and show its higher accuracy on a challenging test when compared to a traditional FD method. Preliminary applications to 2-D seismic scenarios are also presented and show the potential of the mimetic finite differene method.
CitacióSolano, F., Guevara-Jordan, J., González, C., Rojas, O., Otero, B. Modeling seismic wave propagation using staggered-grid mimetic finite differences. "Bulletin of Computational Applied Mathematics", 12 Abril 2017, vol. 5, núm. 2, p. 9-28.
ISSN2244-8659
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
CompAMa_Vol5-N2 ... tero-Accepted20170412).pdf | 2,449Mb | Visualitza/Obre |
Llevat que s'hi indiqui el contrari, els continguts d'aquesta obra estan subjectes a la llicència de Creative Commons:
Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya