Show simple item record

dc.contributor.authorJordanic, Mislav
dc.contributor.authorRojas Martínez, Mónica
dc.contributor.authorMañanas Villanueva, Miguel Ángel
dc.contributor.authorAlonso López, Joan Francesc
dc.contributor.authorMarateb, Hamid Reza
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2017-12-13T15:16:45Z
dc.date.available2017-12-13T15:16:45Z
dc.date.issued2017-07-08
dc.identifier.citationJordanic, M., Rojas, M., Mañanas, M.A., Alonso, J.F., Marateb, H.R. A novel spatial feature for the identification of motor tasks using high-density electromyography. "Sensors", 8 Juliol 2017, vol. 17(7), núm. 1597, p. 1-24.
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/2117/111932
dc.description.abstractEstimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.
dc.format.extent24 p.
dc.language.isoeng
dc.publisherMDPI AG
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Aparells mèdics::Biosensors
dc.subject.lcshElectromyography
dc.subject.lcshBiomechanics
dc.subject.otherhigh-density electromyography
dc.subject.otherpattern recognition
dc.subject.othermyoelectric control
dc.subject.othermean shift
dc.subject.otherprosthetics
dc.titleA novel spatial feature for the identification of motor tasks using high-density electromyography
dc.typeArticle
dc.subject.lemacElectromiografia
dc.subject.lemacBiomecànica
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
dc.identifier.doi10.3390/s17071597
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.mdpi.com/1424-8220/17/7/1597
dc.rights.accessOpen Access
local.identifier.drac21208710
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//DPI2014-59049-R/ES/DISEÑO DE METODOS PARA LA EVALUACION DE PROCESOS DE DETERIORO NEUROLOGICO Y NEUROMUSCULAR ASOCIADOS AL ENVEJECIMIENTO/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/FP7/600388/EU/ACC10 programme to foster mobility of researchers with a focus in applied research and technology transfer/TECNIOSPRING
local.citation.authorJordanic, M.; Rojas, M.; Mañanas, M.A.; Alonso, J.F.; Marateb, H.R.
local.citation.publicationNameSensors
local.citation.volume17(7)
local.citation.number1597
local.citation.startingPage1
local.citation.endingPage24
dc.identifier.pmid28698474


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record