Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.757 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel spatial feature for the identification of motor tasks using high-density electromyography

Thumbnail
View/Open
sensors-17-01597-v2-1.pdf (6,579Mb)
Share:
 
 
10.3390/s17071597
 
  View Usage Statistics
Cita com:
hdl:2117/111932

Show full item record
Jordanic, MislavMés informacióMés informació
Rojas Martínez, Mónica
Mañanas Villanueva, Miguel ÁngelMés informacióMés informacióMés informació
Alonso López, Joan FrancescMés informacióMés informacióMés informació
Marateb, Hamid RezaMés informacióMés informació
Document typeArticle
Defense date2017-07-08
PublisherMDPI AG
Rights accessOpen Access
Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain
ProjectDISEÑO DE METODOS PARA LA EVALUACION DE PROCESOS DE DETERIORO NEUROLOGICO Y NEUROMUSCULAR ASOCIADOS AL ENVEJECIMIENTO (MINECO-DPI2014-59049-R)
TECNIOSPRING - ACC10 programme to foster mobility of researchers with a focus in applied research and technology transfer (EC-FP7-600388)
Abstract
Estimation of neuromuscular intention using electromyography (EMG) and pattern recognition is still an open problem. One of the reasons is that the pattern-recognition approach is greatly influenced by temporal changes in electromyograms caused by the variations in the conductivity of the skin and/or electrodes, or physiological changes such as muscle fatigue. This paper proposes novel features for task identification extracted from the high-density electromyographic signal (HD-EMG) by applying the mean shift channel selection algorithm evaluated using a simple and fast classifier-linear discriminant analysis. HD-EMG was recorded from eight subjects during four upper-limb isometric motor tasks (flexion/extension, supination/pronation of the forearm) at three different levels of effort. Task and effort level identification showed very high classification rates in all cases. This new feature performed remarkably well particularly in the identification at very low effort levels. This could be a step towards the natural control in everyday applications where a subject could use low levels of effort to achieve motor tasks. Furthermore, it ensures reliable identification even in the presence of myoelectric fatigue and showed robustness to temporal changes in EMG, which could make it suitable in long-term applications.
CitationJordanic, M., Rojas, M., Mañanas, M.A., Alonso, J.F., Marateb, H.R. A novel spatial feature for the identification of motor tasks using high-density electromyography. "Sensors", 8 Juliol 2017, vol. 17(7), núm. 1597, p. 1-24. 
URIhttp://hdl.handle.net/2117/111932
DOI10.3390/s17071597
ISSN1424-8220
Publisher versionhttp://www.mdpi.com/1424-8220/17/7/1597
Collections
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.278]
  • BIOART - BIOsignal Analysis for Rehabilitation and Therapy - Articles de revista [65]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
sensors-17-01597-v2-1.pdf6,579MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina