UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
Carathodory's theorem in depth
dc.contributor.author | Fabila Monroy, Ruy |
dc.contributor.author | Huemer, Clemens |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Matemàtiques |
dc.date.accessioned | 2017-12-11T12:19:57Z |
dc.date.available | 2018-12-01T01:31:01Z |
dc.date.issued | 2017-07-01 |
dc.identifier.citation | Fabila, R., Huemer, C. Carathodory's theorem in depth. "Discrete and computational geometry", 1 Juliol 2017, vol. 58, núm. 1, p. 51-66. |
dc.identifier.issn | 0179-5376 |
dc.identifier.uri | http://hdl.handle.net/2117/111689 |
dc.description.abstract | Let X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends only on d and tX(q)tX(q) ) and pairwise disjoint sets X1,…,Xd+1¿XX1,…,Xd+1¿X such that the following holds. Each XiXi has at least c|X| points, and for every choice of points xixi in XiXi , q is a convex combination of x1,…,xd+1x1,…,xd+1 . We also prove depth versions of Helly’s and Kirchberger’s theorems. |
dc.format.extent | 16 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica |
dc.subject.lcsh | Convex geometry |
dc.subject.other | Helly type theorem |
dc.subject.other | Tukey depth |
dc.subject.other | Simplicial depth |
dc.title | Carathodory's theorem in depth |
dc.type | Article |
dc.subject.lemac | Teoremes |
dc.contributor.group | Universitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta |
dc.identifier.doi | 10.1007/s00454-017-9893-8 |
dc.subject.ams | Classificació AMS::32 Several complex variables and analytic spaces::32F Geometric convexity |
dc.relation.publisherversion | https://link.springer.com/article/10.1007%2Fs00454-017-9893-8 |
dc.rights.access | Open Access |
local.identifier.drac | 21122248 |
dc.description.version | Postprint (updated version) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT |
local.citation.author | Fabila, R.; Huemer, C. |
local.citation.publicationName | Discrete and computational geometry |
local.citation.volume | 58 |
local.citation.number | 1 |
local.citation.startingPage | 51 |
local.citation.endingPage | 66 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [85]
-
Articles de revista [3.480]