UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.

Show simple item record

dc.contributor.authorFabila Monroy, Ruy
dc.contributor.authorHuemer, Clemens
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-12-11T12:19:57Z
dc.date.available2018-12-01T01:31:01Z
dc.date.issued2017-07-01
dc.identifier.citationFabila, R., Huemer, C. Carathodory's theorem in depth. "Discrete and computational geometry", 1 Juliol 2017, vol. 58, núm. 1, p. 51-66.
dc.identifier.issn0179-5376
dc.identifier.urihttp://hdl.handle.net/2117/111689
dc.description.abstractLet X be a finite set of points in RdRd . The Tukey depth of a point q with respect to X is the minimum number tX(q)tX(q) of points of X in a halfspace containing q. In this paper we prove a depth version of Carathéodory’s theorem. In particular, we prove that there exist a constant c (that depends only on d and tX(q)tX(q) ) and pairwise disjoint sets X1,…,Xd+1¿XX1,…,Xd+1¿X such that the following holds. Each XiXi has at least c|X| points, and for every choice of points xixi in XiXi , q is a convex combination of x1,…,xd+1x1,…,xd+1 . We also prove depth versions of Helly’s and Kirchberger’s theorems.
dc.format.extent16 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica
dc.subject.lcshConvex geometry
dc.subject.otherHelly type theorem
dc.subject.otherTukey depth
dc.subject.otherSimplicial depth
dc.titleCarathodory's theorem in depth
dc.typeArticle
dc.subject.lemacTeoremes
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1007/s00454-017-9893-8
dc.subject.amsClassificació AMS::32 Several complex variables and analytic spaces::32F Geometric convexity
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs00454-017-9893-8
dc.rights.accessOpen Access
local.identifier.drac21122248
dc.description.versionPostprint (updated version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT
local.citation.authorFabila, R.; Huemer, C.
local.citation.publicationNameDiscrete and computational geometry
local.citation.volume58
local.citation.number1
local.citation.startingPage51
local.citation.endingPage66


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record